DOI QR코드

DOI QR Code

Influence of Fish Compositions and Trophic/Tolerance Guilds on the Fishkills in Geum-River Watershed (Backje Weir)

금강수계(백제보)에서 발생된 어류폐사에 대한 종 조성 및 트로픽/내성도 길드 영향 분석

  • Kwon, Hyuk-Hyun (Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University) ;
  • Han, Jeong-Ho (Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University) ;
  • Yoon, Johee (Geum-River Environment Research Center National Institute of Environmental Research) ;
  • An, Kwang-Guk (Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University)
  • 권혁현 (충남대학교 생명시스템과학대학 생물과학과) ;
  • 한정호 (충남대학교 생명시스템과학대학 생물과학과) ;
  • 윤조희 (환경부 국립환경과학원 금강물환경연구소) ;
  • 안광국 (충남대학교 생명시스템과학대학 생물과학과)
  • Received : 2013.10.31
  • Accepted : 2013.11.21
  • Published : 2013.12.31

Abstract

The objectives of this study were to analyze structures of fish community and the ecological health using a multi-metric fish model, the Index of Biological Integrity (IBI) in the Backje Weir of Geum River during two periods namely before-the-fishkill ($B_f$) and after-the-fishkill ($A_f$). The total number of fish species observed were 32 and among them 10 species (35%) were Korean endemic species. The exotic species observed were 3 which decreased by 0.4% after-the-fishkill ($A_f$). The dominant species were Opsariichthys uncirostris amurensis (13%) at the Bf period and Squalidus japonicus coreanus (17%) at the Af period in the Backje Weir. At after the fishkill ($A_{f-I}$) total biomass was about 10 times lower than the biomass before-the-fishkill ($B_f$). The biomass of Carassius auratus decreased 98% after-the-fishkill and as time passed by the biomass recovered to nearly 100%. Similar decrease in the biomass occurred in the population of Opsariichthys uncirostris amurensis, while Rhinogobius brunneus population increased. According to the structure analysis of fish community, species richness index, evenness index and species diversity index were high but after-the fishkill, the values of indices decreased. Tolerant species (64%) dominated the fish community, and the sensitive species (2%) were rare, indicating the degradation of the ecosystem. According to analysis of the multi-metric model (IBI), the mean model value of the fish community in Backje Weir was estimated as 17.5 indicating a "fair condition".

본 연구는 금강의 백제보에서 2012년 10월 중 하순 발생된 어류폐사 전 후의 어종 분포 및 길드분석을 통한 어류 군집특성 비교 및 생태건강도 평가모델(IBI)을 이용하여 생태건강도 특성을 평가하였다. 백제보 상 하류 구간에서 채집된 어류는 총 32종이었으며, 이들 중 한국고유종은 10종으로 35%를 차지하였다. 외래종은 3종이었고, 폐사 후($A_f$) 0.4%까지 감소하였다. 우점종은 폐사 전(Bf) 끄리(13%), 폐사 후($A_{f-I}$, $A_{f-II}$, $A_{f-III}$) 몰개(17%)로 나타났다. 폐사 후($A_{f-I}$) 생체량은 폐사 전($B_f$)과 비교해 1/10 수준으로 감소한 것으로 나타났다. 대형종인 붕어의 생체량은 어류폐사 이후 98%가 감소하였고 이후 시간이 경과하면서 폐사 전 수준으로 회복하였다. 중형종인 끄리는 지속적으로 감소하였고, 소형종인 밀어는 꾸준히 증가한 것으로 나타났다. 군집분석 결과에 따르면, 종 풍부도 지수, 종 균등도 지수, 종 다양도 지수는 폐사전($B_f$)에 가장 높게 나타났고, 이후 감소하였다. 어류의 내성도 길드분석에 따르면, 내성종(TS)은 67%로 가장 높은 출현빈도를 나타냈고, 반면 민감종(SS)은 2%로 나타나 가장 낮은 출현빈도를 보여, 생태계가 악화 된 것을 나타냈다. 백제보에서 생태건강도 평가에 따르면, IBI 모델 값은 17.5로 보통상태로 진단되었다. 종합적으로, 어류폐사는 어류 종 성분, 어류군집 구조 및 트로픽 길드/내성도 길드 지표 특성에 큰 영향을 미친 것으로 나타났으며, 점차 회복하는 것으로 나타났다. 따라서 백제보에서의 대규모 어류폐사를 예방하기 위해서는 지속적인 생태모니터링이 중요하다고 사료된다.

Keywords

References

  1. An KG, JW Seo and SS Park. 2001a. Influences of seasonal rainfall on physical, chemical and biological conditions near the intake tower of Taechung Reservoir. Korean J. Limnol. 34:327-336.
  2. An KG, SH Jung and SS Choi. 2001b. An evaluation on health conditions of Pyong - Chang River using the index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI). Korean J. Limnol. 34:153-165.
  3. Barbour MT, J Gerritsen, BD Snyder and JB Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. 2nd Ed, EPA 841-B-99-002.
  4. Choi JS, HK Byeon and HK Seok. 2000. Studies on the dynamics of fish community in Wonju Stream. Korean J. Limnol. 33:274-281.
  5. Cohen GM. 1977. The influence of cations on chlorine toxicity. B. Environ. Contam. Tox. 18:131-137. https://doi.org/10.1007/BF01686319
  6. Durhan BW, GR Wilds and LL Pope. 2006. Temperature-caused fish kill in a flowing Great Plains River. Southwest. Nat. 51:397-401. https://doi.org/10.1894/0038-4909(2006)51[397:TFKIAF]2.0.CO;2
  7. Fisher TR, ER Peele, JW Ammerman and L Harding. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser. 82:51-63. https://doi.org/10.3354/meps082051
  8. Foss A, T Vollen and V Oiestad. 2003. Growth and oxygen consumption in normal and $O_2$ supersaturated water, and interactive effects of $O_2$ saturation and ammonia on growth in spotted wol fish (Anarhichas minor Olafsson). Aquaculture 224:105-116. https://doi.org/10.1016/S0044-8486(03)00209-6
  9. Han JH, EH Lee and KG An. 2009. Analysis of fish compositions and ecological indicator characteristic in Masan Reservoir. Korean J. Limnol. 42:212-220.
  10. Han JH, HM Kim and KG An. 2013. Chemical water quality and multi-metric eco-health model assessments in Backma River. Korean J. Environ. Biol. 31:96-104. https://doi.org/10.11626/KJEB.2013.31.2.096
  11. Han JH and KG An. 2013. Chemical water quality and fish community characteristics in the mid- to downstream reach of Geum River. Korean J. Environ. Biol. 31:180-188. https://doi.org/10.11626/KJEB.2013.31.3.180
  12. Haslouer SP. 1983. Natural and pollution caused fish kills in Kansas during 1979-1980. Trans. Kans. Acad. Sci. 86:136-143. https://doi.org/10.2307/3628165
  13. James WF, RH Kennedy, RH Montgomery and J Nix. 1987. Seasonal and longitudinal variations in apparent deposition rates within an Arkansas Reservoir. Limnol. Oceanogr. 32:1169-1176. https://doi.org/10.4319/lo.1987.32.5.1169
  14. Jeon SR. 1980. Studies on the distributions of the Korean freshwater fishes, Ph. D Thesis, Chungang University, Korea. pp. 18-45.
  15. Jones JR, MF Knowlton and KG An. 1997. Developing a paradigm to study and model the eutrophication process in Korean reservoirs. Korean J. Limnol. 30:463-471.
  16. Karr JR. 1981. Assessment of biotic integrity using fish communities. Fishieries 6:21-27. https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
  17. Katz BM. 1979. The effects of cations on sodium fluxes in the presence of chlorine. B. Environ. Contam. Tox. 21:569-575. https://doi.org/10.1007/BF01685471
  18. Kim WS, MK Lee, KH Park, SJ Jung and MJ Oh. 2003. The infection of Myxobolus sp. In wild mullet, Mugil cephalus. J. Fish Pathol. 16:31-38.
  19. Kim YH, JH Han and KG An. 2012. Physico-chemical water quality gradients along the main axis of the headwater-todownstream of Geumho River and their influences on fish guilds. J. Korean Soc. Water Environ. 28:561-573.
  20. Korea Environment Institute (KEI). 2005. Development of sustainable estuary management strategy in Korea II, Korea Environment Institute, pp.141-229.
  21. Krenkel PA, GF Lee and RA Jones. 1979. Effects of the impoundments on downstream water quality and biota. pp.289-306. In The Ecology of Regulated Stream (Ward JV and FA Stanford eds.). Plenum Press. NY.
  22. Lee EH, DG Seo, HD Hwang, JH Yun and JH Choi. 2006. Causes of fish kill in the urban stream I - field surveys and laboratory experiments. J. Korean Soc. Water Wastewater 20:573-584.
  23. Lee JY, KY Lee, S Lee, JS Choi, SJ Lee, SM Jung, MS Jung and B Kim. 2013. Recovery of fish community and water quality in streams where fish kills have occurred. J. Eco. Env. 6:154-165.
  24. Lee SJ, BN Huh, GW Hyun, IR Huh, WG Jung, SY Koh, TW Lee, YJ Kim, SS Kim and SB Park. 2006. Water pollution affecting massive fish kills. Rep. Inst. Health & Environ. 19:93-103.
  25. Lee SJ, CC Kim, GW Hyun, WJ Won, CK Park, YK Sin, JY Eun, WG Jeong, SY Koh, JB Kim, HH Lee, SB Park and CJ Choi. 2011. Characteristics of the massive fish kill in Kangwon-Do. Rep. Inst. Health & Environ. 22:72-79.
  26. Macan TT. 1961. Factors that limit the range of fresh-water animals. Biol. Rev. 36:51-198.
  27. Margalef R. 1958. Temporal succession and spatial heterogeneity in nature phytoplankton, perspectives in marine biology, Buzzati-Traverso, AA.(ed.), University of California Press, pp. 323-349.
  28. Matthews KR and NH Berg. 1997. Rainbow trout responses to water temperature and dissolved oxygen stress in two Southern California stream pools. J. Fish Biol. 50:50-67. https://doi.org/10.1111/j.1095-8649.1997.tb01339.x
  29. OECD. 1977. Eutrophication of waters-monitoring, assessment and control, pp. 154.
  30. Ohio EPA. 1989. Biological criteria for the protection of aquatic life (Vol III): standardized viological field sampling and laboratory method for assessing fish and macroinvertebrate communities, Division of Water Quality Monitoring and Assessment, Columbus, Ohio, pp. V-4-18-V-4-31.
  31. Park TG, YS Kang, MK Seo, CH Kim and YT Park. 2008. Rapid detection and quantification of fish killing dinoflagellate Cochlodinium polykrikoides (Dinophyceae) in environmental samples using real-time PCR. J. Fish. Sci. Technol. 11:205-208.
  32. Pielou EC. 1975. Ecological diversity, Wiley, New York, pp. 165.
  33. Raleigh RF, DH Bennett and LO Mohn. 1978. Changes in fish stocks after major fish kills in the Clinch River near St. Paul, Virginia. The Am. Midl. Nat. 99:1-9. https://doi.org/10.2307/2424929
  34. Shannon CE and W Weaver. 1963. The mathematical theory of communication, university of Illinois Press, Urbana.
  35. Simpson EH. 1949. Measurement of diversity. Nature 163, pp. 688. https://doi.org/10.1038/163688a0
  36. US EPA. 1993. Fish field and laboratory methods for evaluating the biological integrity of surface water. EPA 600-R-92-111. Cincinnati, Ohio 45268.
  37. Van Hoof F and M Van San. 1981. Analysis of copper, zinc, cadmium and chromium in fish tissues. A tool for detecting metal caused fish kills. Chemosphere 10:1127-1135. https://doi.org/10.1016/0045-6535(81)90183-1
  38. Yang HC and SK Chun. 1986. Histopathological study of acute toxicity of ammonia on common carp, Cyprinus carpio. Bull. Korean Fish. Soc. 19:249-256.
  39. Zeitoun IH. 1977. The effect of chlorine toxicity on certain blood parameters of adult rainbow trout (Salmo gairdneri). Environ. Biol. Fish. 2:189-195.