DOI QR코드

DOI QR Code

Physiological and Ecological Characteristics of Lipid-Producing Botryococcus Isolated from the Korean Freshwaters

한국산 고지질 미세조류 Botryococcus의 분포 및 생장 특성

  • Shin, Sang-Yoon (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ;
  • Jo, Beom-Ho (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ;
  • Lee, Hyung-Gwan (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ;
  • Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
  • 신상윤 (한국생명공학연구원 환경바이오연구센터) ;
  • 조범호 (한국생명공학연구원 환경바이오연구센터) ;
  • 이형관 (한국생명공학연구원 환경바이오연구센터) ;
  • 오희목 (한국생명공학연구원 환경바이오연구센터)
  • Received : 2013.09.10
  • Accepted : 2013.10.17
  • Published : 2013.12.31

Abstract

Recently, sustainable production of biofuel using algal biomass is being pursued because of its enormous potential. First and foremost, securing superior strains to develop an efficient production system for algal biodiesel through screening or genetic improvement of microalgae is necessary. The genus of Botryococcus is regarded as one of the superior microalgae for biodiesel production due to its ability to accumulate high amounts of lipids and hydrocarbons. However, its low growth rate is a bottleneck for large-scale production and commercialization. The purpose of this study is to obtain indigenous Botryococcus strains which possess high lipid content and biomass productivity. The Botryococcus sp. was isolated from the Seobu Reservoir in Jeju Island and identified as Botryococcus sudeticus J2 by comparative analysis of 18s rRNA gene and ITS regions. The biomass productivity and lipid content of B. sudeticus J2 were 0.116 g $L^{-1}day^{-1}$ and 40.1% of dry wt., respectively. This was higher than the value of B. braunii UTEX 572, which is widely regarded as a superior strain among Botryococcus species. The relatively high growth rate of B. sudeticus J2 was achieved under a light intensity of 240 ${\mu}mol$ photons $m^{-2}s^{-1}$ with ambient air spargingwhen compared to 120 ${\mu}mol$ photons $m^{-2}s^{-1}$ with 2% $CO_2$ supply. In summary, it is likely that the isolated B. sudeticus J2 can be used for the mass cultivation and biodiesel production.

한국산 고지질 Botryococcus를 확보하기 위해 시료채취를 하였고, 실험실에서 Botryococcus sp.를 분리하였다. 분리된 Botryococcus sp.는 현미경으로 그 크기와 형태를 관찰하였고, 분자적 동정을 위해 18S rRNA gene과 ITS region의 염기서열을 분석함으로써 Botryococcus sudeticus J2로 명명하였으며, 생태학적 특성 연구를 위해 문헌조사를 통해 국내의 Botryococcus 속의 분포를 조사를 실시하였다. 동정된 B. sudeticus J2의 생리적 특성 분석을 위해 배양실험을 수행하였고, 생장률과 바이오매스 생산성 그리고 광합성효율을 측정하였다. 또한 바이오디젤 생산을 위한 조류주로서의 가치를 판단하기 위해 총 지질함유량과 지방산 조성을 분석하였다. B. sudeticus J2의 생태적, 생리적 연구 후 2배의 광량과 2% $CO_2$ 조건에서 배양을 수행함으로써 최적 배양조건을 탐색하고자 하였다. 분리된 B. sudeticus J2는 비교를 위한 B. braunii UTEX 572보다 높은 바이오매스 생산성과 지질생산성을 보였으나 바이오매스 생산을 위한 다른 후보 미세조류에 비해서는 낮은 생장률을 보였다. 따라서 바이오디젤 생산을 위한 조류로 B. sudeticus J2를 활용하기 위해서는 본 연구에서 밝혀진 광저해에 대한 내성에 초점을 맞추어 최적 배양을 위한 광조건을 탐색하는 연구가 필요하다.

Keywords

References

  1. Ahn CY, HS Kim, BD Yoon and HM Oh. 2002. Photosynthetic characteristics and cell quota of nitrogen and phosphorus in Scenedesmus quadricauda under P limitation. Algae 17:83-87. https://doi.org/10.4490/ALGAE.2002.17.2.083
  2. Allen MM and RY Stanier. 1968. Growth and division of some unicellular blue-green algae. J. Gen. Microbiol. 51:199-202. https://doi.org/10.1099/00221287-51-2-199
  3. APHA (American Public Health Association). 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, D.C.
  4. Baillez C, C Largeau, C Berkaloff and E Casadevall. 1986. Immobilization of Botryococcus braunii in alginate: influence on chlorophyll content, photosynthetic activity and degeneration during batch cultures. Appl. Microbiol. Biotechnol. 23:361-366.
  5. Bligh EG and WJ Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917. https://doi.org/10.1139/o59-099
  6. Boyle G. 2004. Renewable Energy. Oxford Univ. Press, UK.
  7. Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25:294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  8. Heiskary S and WW Walker. 1987. Developing phosphorus criteria for Minnesota lakes. Lake Reserv. Manage. 4:1-9.
  9. Jeong J. 1993. Illustration of the Freshwater Algae of Korea. Academy Publishing Co., Seoul.
  10. Kim MK. 2008. Patterns in phytoplankton community structure in the Beopsu Marsh, Haman-gun, Gyeongsangnam-do, Korea. Algae 23:219-230. https://doi.org/10.4490/ALGAE.2008.23.3.219
  11. Kim YJ, JS Kim and J Chung. 1991. Seasonal variation of phytoplankton in Tokdong and Pomun Lakes. Korean J. Limnol. 24:251-263.
  12. Lee SH, CH Lee, BH Jo, CY Ahn, HS Kim and HM Oh. 2012. Isolation and phylogenetic analysis of Botryococcus braunii (Trebouxiophyceae) from Korean freshwaters. Korean J. Environ. Biol. 30:31-38.
  13. Lee SJ, BD Yoon and HM Oh. 1998. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol. Tech. 12:553-556. https://doi.org/10.1023/A:1008811716448
  14. Mata TM, AA Martins and NS Caetano. 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 14:217-232. https://doi.org/10.1016/j.rser.2009.07.020
  15. Meng X, J Yang, X Xu, L Zhang, Q Nie and M Xian. 2009. Biodiesel production from oleaginous microorganisms. Renew. Energ. 34:1-5. https://doi.org/10.1016/j.renene.2008.04.014
  16. Rao R, R Sarada and GA Ravishankar. 2007. Influence of $CO_2$ on growth and hydrocarbon production in Botryococcus braunii. J. Microbiol. Biotechnol. 17:414-419.
  17. Rodolfi L, CZ Graziella, B Niccolo, P Giulia, B Natascia, B Gimena and RT Mario. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low cost photobioreactor. Biotechnol. Bioeng. 102:100-112. https://doi.org/10.1002/bit.22033
  18. Senousy HH, WB Gordon and H Ethan. 2004. Phylogenetic placement of Botryococcus braunii (Trebouxiophyceae) and Botryococcus sudeticus isolated UTEX 2629 (Chlorophyceae). J. Phycol. 40:412-423. https://doi.org/10.1046/j.1529-8817.2004.03173.x
  19. Sheehan J, T Dunahay, J Benemann and P Roessler. 1998. A Look Back at the US Department of Energy's Aquatic Species Program: Biodiesel from Algae. Golden: National Renewable Energy Laboratory.
  20. Tredici MR, P Carlozzi, GC Zittelli and R Materassi. 1991. A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour. Technol. 38:153-159. https://doi.org/10.1016/0960-8524(91)90147-C
  21. Wake LV and LW Hillen. 1980. Study of a "bloom" of the oil rich alga Botryococcus braunii in the Darwin River Reservoir. Biotechnol. Bioeng. 22:1637-1656. https://doi.org/10.1002/bit.260220808