$CO_2$ permeation behavior of Pebax-2533 plate membranes prepared from 1-Propanol/n-Butanol mixed solvents

1-프로판올/n-부탄올 혼합용매로부터 제조된 Pebax-2533 판형 분리막의 $CO_2$ 투과거동 연구

  • Lee, Sang Hoon (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Kim, Min Zy (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Cho, Churl Hee (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Han, Moon Hee (Graduate School of Green Energy Technology, Chungnam National University)
  • 이상훈 (충남대학교 녹색에너지기술전문대학원) ;
  • 김민지 (충남대학교 녹색에너지기술전문대학원) ;
  • 조철희 (충남대학교 녹색에너지기술전문대학원) ;
  • 한문희 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2013.10.03
  • Accepted : 2013.10.09
  • Published : 2013.10.31

Abstract

In the present study, Pebax-2533 plate membranes were prepared by drying precursor solutions which were obtained by dissolving Pebax-2533 polymer in 1-Propanol/n-Butanol mixed solvents. And then the $CO_2$ and $N_2$ permeation behaviors were tested by using a time-lag system. The prepared Pebax-2533 plate membranes showed a considerable $CO_2/N_2$ separation performance : the $CO_2$ permeability was 130 to 288 barr, and the $CO_2/N_2$ permselectivity was 5-8. The $CO_2$ permeation data obtained by varying feed pressure, permeation temperature, and solvent composition announced that not only the $CO_2$ sorption but also the $CO_2$ diffusion is equally important in the overall $CO_2$ permeation.

본 논문에서는 Pebax-2533 판형 분리막을 1-프로판올과 n-부탄올 혼합용매를 이용하여 용해, 건조하여 제조하였고 time-lag 장치를 이용하여 $CO_2$, $N_2$ 투과특성을 평가하였다. 제조된 분리막은 평가조건에 따라서 130-288 barrer의 $CO_2$ 투과율을 가졌으며, $CO_2/N_2$ 투과선택도는 5-8이었다. Time-lag 장치의 주입부 압력이 증가함에 따라서, 투과온도가 낮아짐에 따라서, 그리고 혼합용매의 n-부탄올 양이 증가함에 따라서 $CO_2$ 투과도는 감소하였다. 이러한 실험 자료는 Pebax-2533 분리막의 $CO_2$ 투과율이 $CO_2$ 용해에 매우 의존할 것이라 예측과 달리, $CO_2$ 용해뿐만 아니라 $CO_2$ 확산도 매우 중요한 단계임을 의미하였다.

Keywords

References

  1. A. B. Shelekhin, E. J. Grosgogeat, and S. T. Hwang, "Gas Separation Properties of a New Polymer/Inorganic Composite Membrane", J. Membr. Sci., 66, 129 (1992). https://doi.org/10.1016/0376-7388(92)87003-G
  2. S. Sridhar, R. Suryamurali, B. Smitha, and T. M. Aminabhavi, "Development of Crosslinked Poly (ether-block-amide) Membrane for $CO_{2}$/$CH_{4}$ Separation", Colloids Surf. A., 297, 267 (2007). https://doi.org/10.1016/j.colsurfa.2006.10.054
  3. V. Bondar, B. D. Freeman, and I. Pinnau, "Gas Transport Properties of Poly(ether-b-amide) Segmented Block Copolymers", J. Polym. Sci.(Part B: Polym. Phys.), 38, 2051 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  4. A. Car, C. Stropnik, W. Yave, and K. Peinemann, "Pebax/Polyethylene Glycol Blend Thin Film Composite Membranes for $CO_{2}$ Separation: Performance with Mixed Gases", Sep. Purif. Technol., 62, 110 (2008). https://doi.org/10.1016/j.seppur.2008.01.001
  5. H. Kim, C. Lim, and S. Hong, "Gas Permeation Properties of Organic-Inorganic Hybrid Membranes Prepared from Hydroxyl Terminated Polyether and 3-Isocyanatopropyltriethoxysilane", J. Sol-Gel Sci. Technol., 36, 213 (2005). https://doi.org/10.1007/s10971-005-3782-y
  6. H. B. Kim, M. W. Lee, W. K. Park, S. J. Lee, H. K. Lee, and S. H. Lee., "Permeation Properties of Single Gases ($N_{2}$, $O_{2}$, $SF_{6}$, $CF_{4}$) through PDMS and PEBAX Membranes", Membrane Journal., 22, 202 (2012).
  7. C. H. Hyung, C. D. Park, K. H. Kim, J. W. Rhim, T. S. Hwang, and H. K. Lee., "A Study on the $SO_{2}$/$CO_{2}$/$N_{2}$ Mixed Gas Separation Using Polyetherimide/ PEBAX/PEG Composite Hollow Fiber Membrane", Membrane Journal., 22, 405 (2012).
  8. K. Kim, S. Park, W. So, D. Ahn, and S. Moon, "$CO_{2}$ Separation Performances of Composite Membranes of 6FDA-Based Polyimides with a Polar Group", J. Membr. Sci., 211, 41 (2003). https://doi.org/10.1016/S0376-7388(02)00316-2
  9. H. Cong, M. Radosz, B. F. towler, and Y. Shen, "Polymer-Inorganic Nanocomposite Membranes for Gas Separation", Sep. Purif. Technol., 55, 281 (2007). https://doi.org/10.1016/j.seppur.2006.12.017
  10. H. J. Kim., "Gas Permeation Properties of Carbon Dioxide and Methane for PEBAXTM/TEOS Hybrid Membranes", Korean Chem. Eng. Res., 49, 461 (2011).
  11. R. Tamaki, Y. Chujo, K. Kuraoka, and T. Yazawa, "Application of Organic-Inorganic Polymer Hybrids as Selective Gas Permeation Membranes", J. Mater. Chem., 9, 1741 (1999). https://doi.org/10.1039/a809059i
  12. Jennifer C. Chen a, Xianshe Feng a & Alexander Penlidis., "Gas Permeation Through Poly (Ether.b. amide) (PEBAX 2533) Block Copolymer Membranes", Sep. Purif. Technol., 39, 150 (2004).
  13. J. T. Chung, C. S. Lee, H. C. Koh, S. Y. Ha, S. Y. Nam, W. J. Jo, and Y. S. Baek., "Polymeric Membrane Modules for Substituting the $CO_{2}$ Absorption Column in the DME Plant Process", Membrane Journal., 22, 144 (2012).
  14. J. H. Kim, S. Y. Ha, and Y. M. Lee, "Gas permeation of poly (amide-6-b-ethylene oxide) copolymer", J. Membr. Sci., 190, 188 (2001).
  15. H. Yasuda and A. Peterlin, "Gas permeability of deformed polyethylene films", J. Appl. Polym. Sci., 18, 533 (1974).