Effect of Carbonization Conditions on Gas Permeation of Methyl Imide Based Carbon Molecular Sieve Hollow Fiber Membranes

탄화조건이 메틸이미드계 탄소 분자체 중공사 분리막의 기체 투과특성에 미치는 영향 연구

  • Seong, Ki Hyeok (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Song, Ju Sub (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Koh, Hyung Chul (Airrane Co. Ltd.) ;
  • Ha, Seong Yong (Airrane Co. Ltd.) ;
  • Han, Moon Hee (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Cho, Churl Hee (Graduate School of Green Energy Technology, Chungnam National University)
  • 성기혁 (충남대학교 녹색에너지기술전문대학원) ;
  • 송주섭 (충남대학교 녹색에너지기술전문대학원) ;
  • 고형철 ((주)에어레인) ;
  • 하성용 ((주)에어레인) ;
  • 한문희 (충남대학교 녹색에너지기술전문대학원) ;
  • 조철희 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2013.10.03
  • Accepted : 2013.10.09
  • Published : 2013.10.31

Abstract

In the present study, carbon molecular sieve (CMS) hollow fiber membranes were prepared by carbonizing a methyl imide hollow fiber precursor, which was spun by non-solvent induced phase separation process. And effects of carbonization parameters such as pre-oxidation, pyrolysis, and post-oxidation on the gas permeation were systematically investigated. CMS membrane having the highest gas flux was obtained by carbonizing the precursor through a combined process of air pre-oxidation at $250^{\circ}C$ for 2h, nitrogen pyrolysis at $550^{\circ}C$ for 2h, and oxygen post-oxidation at $250^{\circ}C$ for 2h. The optimized membrane showed a considerable gas permeance : the $H_2$, He, $CO_2$ permeances were 69.72, 35.61, 31.01 GPU, respectively, and the $O_2$ and $N_2$ permeances were ignorable. Therefore, it was clear that the prepared CMS hollow fiber membrane was a promising membrane for recovering small gases such as hydrogen and hellium and carbon dioxide.

본 연구에서는 Matrimid-5218로부터 메틸이미드 중공사 전구체를 비용매 유도 상분리법으로 제조한 후에 탄화시켜 탄소 분자체 중공사 분리막을 제조하였으며 전처리, 열분해, 후처리 공정이 탄소 분자체 중공사 분리막의 기체 투과 특성에 미치는 영향을 살펴보았다. $250^{\circ}C$에서 2시간 공기 중에서 전처리하고, $550^{\circ}C$에서 2시간 질소 분위기에서 열분해한 후, $250^{\circ}C$에서 2시간 공기 중에서 후처리할 때에 가장 높은 기체 투과특성을 갖는 분리막이 제조되었다. 제조된 탄소 분리막은 $H_2$, He, $CO_2$ 투과도가 69.72, 35.61, 31.01 GPU이었으며 $O_2$, $N_2$ 가스는 거의 투과하지 않았다. 따라서 제조된 탄소분자체 중 공사 분리막은 $H_2$, He 등 작은 분자 기체와 $CO_2$ 회수용 분리막으로서 우수한 소재임을 확인할 수 있었다.

Keywords

References

  1. Y. M. Lee, H. B. Park, and I. Y. Suh, "Preparation and Application of Carbon Molecular Sieve Membranes for Gas Separation", Membrane Journal, 11, 1 (2001).
  2. Y. G. Park and Y. M. Lee, "Membrane Fouling in the Membrane Process", Membrane Journal, 6, 1 (1996).
  3. D. Y. Oh and S. Y. Nam, "Developmental Trend of Polyimide Membranes for Gas Separation", Membrane Journal, 21, 307 (2011).
  4. J. Koresh and A. Softer, "Molecular sieve carbon permselective membrane. Part 1. Presentation of a new device for gas mixture separation", Sep. Sci. Technol., 18, 723 (1983). https://doi.org/10.1080/01496398308068576
  5. S. M. Saufi and A. F. Ismail, "Fabrication of carbon membranes for gas separation-a review", Carbon, 42, 241 (2004). https://doi.org/10.1016/j.carbon.2003.10.022
  6. H. Suda and K. Haraya, "Gas permeation through micropores of carbon molecular sieve membranes derived from kapton polyimide", J. Phys. Chem. B., 101, 3988 (1997). https://doi.org/10.1021/jp963997u
  7. J. E. Koresh and A. Soffer, "Mechanism of permeation through molecular sieve carbon membrane. Part 1. The effect of adsorption and the dependence on pressure", J. Chem. Soc., Faraday Trans. 1., 82, 2057 (1986). https://doi.org/10.1039/f19868202057
  8. J. M. Bauer, J. Elyssini, G. Monocorge, T. Nodari, and E. Totino, "New developments and application of carbon membranes", Key Eng. Mater., 61-62, 207 (1991).
  9. J. Peterson, M. Matsuda, and K. Haraya, "Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation", J. Membr. Sci., 85, 131 (1997).
  10. E. Schindler and F. Maier, Manufacture of porous carbon membranes. US Patent 4919860, April 24 (1990).
  11. K. M. Steel. "Carbon membranes for challenging gas separations", Ph.D. Dissertation, University of Texas, Texas, Austin (2000).
  12. V. C. Geiszler and W. J. Koros, "Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties", Ind. Eng. Chem. Res., 35, 2999 (1996). https://doi.org/10.1021/ie950746j
  13. A. B. Fuertes and T. A. Centeno, "Preparation of supported carbon molecular sieve membrane", Carbon, 37, 679 (1999). https://doi.org/10.1016/S0008-6223(98)00244-9
  14. L. Xu, M. Rungta, and W. J. Koros, "$Matrimid^{(R)}$ derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation", J. Membr. Sci., 380, 138 (2011). https://doi.org/10.1016/j.memsci.2011.06.037
  15. E. P. Favvas, G. C. Kapantaidakis, J. W. Nolan, A. C. Mitropoulos, and N. K. Kanellopoulos, "Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on $Matrimid^{(R)}$5218 precursor", J. Mater. Process. Technol., 186, 102 (2007). https://doi.org/10.1016/j.jmatprotec.2006.12.024
  16. P. S. Tin, T.-S. Chung, S. Kawi, and M. D. Guiver, "Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides", Microporous Mesoporous Mater., 151, 73 (2004).
  17. H. Maab, S. Shishatskiy, and S. P. Nunes, "Preparation and characterization of bilayer carbon/ polymer membranes", J. Membr. Sci., 326, 27 (2009). https://doi.org/10.1016/j.memsci.2008.09.014
  18. D. Q. Vu, W. J. Koros, and S. J. Miller, "Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results", J. Membr. Sci., 211, 311 (2003). https://doi.org/10.1016/S0376-7388(02)00429-5
  19. K. Briceno, A. Iulianelli, D. Montane, G.-V. Ricard, and A. Basile, "Carbon molecular sieve membranes supported on nonmodified ceramic tubes for hydrogen separation in membrane reactors", Int. J. Hydrogen Energy, 37, 3536 (2012).
  20. L. Y. Jiang, T.-S. Chung, and R. Rajagopalan, "Dual-layer hollow carbon fiber membranes for gas separation consisting of carbon and mixed matrix layers", Carbon, 45, 166 (2007). https://doi.org/10.1016/j.carbon.2006.07.008
  21. A. B. Fuertes, D. M. Nevskaia, and T. A. Centeno, "Carbon composite membranes from MatrimidA and KaptonA polyimides for gas separation". Microporous Mesoporous Mater., 33, 155 (1999).
  22. S. Shishatskiy, C. Nistor, M. Popar, S. P. Nunes, and K. V. Peinemann, "Polyimide Asymmetric Membranes for Hydrogen Separation: Influence of Formation Conditions onGas Transport Properties", Adv. Eng. Mat., 8, 390 (2006). https://doi.org/10.1002/adem.200600024
  23. Y. Kusuki, H. Shimazaki, N. Tanihara, S. Nakanishi, and T. Yoshinaga, "Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane", J. Membr. Sci., 134, 245 (1997). https://doi.org/10.1016/S0376-7388(97)00118-X
  24. A. B. Fuertes, "Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes", Carbon, 39, 697 (2001). https://doi.org/10.1016/S0008-6223(00)00168-8
  25. V. C. Geiszler, B. S., and M. S. ChE, "polyimide precursors for carbon molecular sieve membranes", Ph.D. Dissertation, the university of texas, texas, austin (1997).
  26. C. Liang, G. Sha, and S. Guo, "Carbon membrane for gas separation derived from coal tar pitch", Carbon, 37, 1391 (1999). https://doi.org/10.1016/S0008-6223(98)00334-0
  27. A. Soffer, D. Rosen, S. Saguee, and J. Koresh, "Carbon membranes", GB patent 2207666, (1989).
  28. A. Soffer, A. Azariah, A. Amar, H. Cohem, D. Golub, S. Saguee, et. al., "Method of improving the selectivity of carbon membranes by chemical vapor deposition", US patent 5695818, December 9 (1997).
  29. N. Tanihara, H. Shimazaki, Y. Hirayama, S. Nakanishi, T. Yoshinaga, and Y. Kusuki, "Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber", J. Membr. Sci., 160, 179 (1999). https://doi.org/10.1016/S0376-7388(99)00082-4
  30. K. Haraya, H. Suda, H. Yanagishita, and M. Matsuda, "Asymmetric capillary membrane of a carbon molecular sieve", J. Chem. Soc., Chem. Commun., 1781 (1995).
  31. J. Petersen, M. Matsuda, and K. Haraya, "Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas permeation", J. Membr. Sci., 131, 85 (1997). https://doi.org/10.1016/S0376-7388(97)00041-0
  32. E. P. Favvas, G. E. Romanos, S. K. Papageorgiou, F. K. Katsaros, A. C. Mitropoulos, and N. K. Kanellopoulos, "A methodology for the morphological and physicochemical characterisation of asymmetric carbon hollow fiber membranes", J. Membr. Sci., 375, 113 (2011). https://doi.org/10.1016/j.memsci.2011.03.028
  33. H. Suda and K. Haraya, "Gas Permeation through Micropores of Carbon Molecular Sieve Membranes Derived from Kapton Polyimide", J. Phys. Chem., 101, 3988 (1997). https://doi.org/10.1021/jp963997u
  34. E. P. Favvas, G. C. Kapantaidakis, J. W. Nolan, A. C. Mitropoulos, and N. K. Kanellopoulos, "Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on $Matrimid^{(R)}$ 5218 precursor", J. Mater. Process. Technol., 186, 102 (2007). https://doi.org/10.1016/j.jmatprotec.2006.12.024