Preparation and Characterization of Nanofiltration Membranes for Recovery of Organic Acids from Fermentation Broth

발효액 내 유기산의 효과적 회수를 위한 나노여과 분리막

  • Hwang, Yoon Sung (WCU Department of Energy Engineering, Hanyang University) ;
  • Cho, Young Hoon (WCU Department of Energy Engineering, Hanyang University) ;
  • Park, Ho Bum (WCU Department of Energy Engineering, Hanyang University)
  • 황윤성 (한양대학교 에너지공학과) ;
  • 조영훈 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2013.08.13
  • Accepted : 2013.08.26
  • Published : 2013.08.30

Abstract

In fermentation-separation processes, nanofiltration membrane processes can be used to separate organic acid and other byproducts such as sugars and proteins. In this study, new nanofiltration membranes were prepared to improve organic acid permeability during the separation processes of fermentation broth. Positively charged nanofiltration membrane was introduced to reduce lactic acid rejection by electrostatic attraction between lactic acid and nanofiltration membrane. Newly fabricated nanofiltration membranes were prepared by grafting cationic polyelectrolyte, PEI, on membrane surface. Thenanofiltration membranes showed positively charged surface potential. As a result, lactic acid rejection was remarkably reduced while the rejection of glucose was not changed significantly.

발효공정으로부터 생산된 유기산의 회수를 위하여 나노여과 분리막 공정을 이용하는 경우 유기산을 제외한 발효액 내 존재하는 당, 단백질 등의 부산물을 배제하면서 유기산을 선택적으로 투과시킬 수 있는 나노여과막이 요구된다. 본 연구에서는 발효액으로부터 분자량이 상대적으로 작고 카르복실산기를 갖는 유기산의 효과적인 회수를 위하여 분리막 표면에 양전하를 도입하여 전기적 인력에 의해 젖산의 투과도를 향상시킬 수 있는 신규 나노여과 분리막을 제조하였다. 분리막 표면에 고분자 전해질 PEI (Polyethyleneimine)를 그라프팅시켜 제조된 분리막의 제타전위 측정 결과 표면 층이 양전하를 나타내는 것을 확인하였다. 실제 젖산 용액 배제율 확인 결과 고분자 전해질 그라프팅 층이 형성된 막에서 배제율이 크게 감소하는 것으로 보아 그라프팅 층에 의한 젖산 배제율 저감에 효과를 나타내었다.

Keywords

References

  1. FA Castillo Martinez, EM Balciunas, and JM Salgado, "Lactic acid properties, applications and production : A review", Trends in Food Science & Technology, 30, 70 (2012).
  2. P. Rogers, J.-S. Chen, and M. J. Zidwick, "Organic Acid and Solvent Production : Acetic, Lactic, Gluconic, Succinic, and Polyhydroxyalkanoic Acids", Springer-Verlag, Dusseldorf, Germany, 511-755 (2006).
  3. P. Pal, J. Sikder, S. Roy, and L. Giorno, "Process intensification in lactic acid production : A review of membrane based processes", Chemical Engineering and Processing : Process Intensification, 48, 1549 (2009).
  4. N. Narayanan, P. K. Roychoudhury, and A. Srivastava, "L (+) lactic acid fermentation and its product polymerization", Electronic Journal of Biotechnology, 7, 167 (2004).
  5. KL. Wasewar, AA. Yawalkar, JA. Moulijin, and VG. Pangarkar, "Fermentation of glucose to lactic acid coupled with reactive extraction : A review", Industrial & Engineering Chemistry Research, 43, 5969 (2004). https://doi.org/10.1021/ie049963n
  6. AM. Eyal and E. Bressler, "Industrial separation of carboxylic and amino acids by liquid membranes : Applicability, process considerations, and potential advantage", Biotechnology and Bioengineering, 41, 287 (1993). https://doi.org/10.1002/bit.260410302
  7. RN. Shreve and J. A. Brink Jr, "Chemical Process Industries", pp. 814, McGraw-Hill Book Co, New York, NY (1977).
  8. E. Vellenga and G. Trägårdh, "Nanofiltration of combined salt and sugar solutions : coupling between retentions", Desalination, 120, 211 (1998). https://doi.org/10.1016/S0011-9164(98)00219-7
  9. A. Bouchoux, H. R. Balmann, and F. Lutin, "Nanofiltration of glucose and sodium lactate solutions : Variations of retention between single-and mixedsolute solutions", J. Membr. Sci., 258, 123 (2005). https://doi.org/10.1016/j.memsci.2005.03.002
  10. B. Van der Bruggen, J. Schaep, D. Wilms, and C. Vandecasteele, "Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration", J. Membr. Sci., 156, 29 (1999). https://doi.org/10.1016/S0376-7388(98)00326-3
  11. J. Schaep, B. Van der Bruggen, C. Vandercasteele, and D. Wilms, "Influence of ion size and charge in nanofiltration", Separation and Purification Technology, 14, 155 (1998). https://doi.org/10.1016/S1383-5866(98)00070-7
  12. J. H. Choi, C. K. Yeom, J. M. Lee, and D. S. Suh, "Nanofiltration of electrolytes with charged composite membranes", Membrane Journal, 13, 29 (2003).
  13. A. E. Childress and M. Elimelech, "Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics", Environmental Science & Technology, 34, 3710 (2000). https://doi.org/10.1021/es0008620
  14. A. A. Hussain, M. E. E. Abashar, and I. S. Al- Mutaz, "Prediction of Charge Density for Desal- HL Nanofiltration Membrane from Simulation and Experiment using Different Ion Radii", Separation Science and Technology, 42, 43 (2007). https://doi.org/10.1080/01496390600998003
  15. S. U. Hong, "Effects of Substrates on Nanofiltration Characteristics of Multilayer Polyelectrolyte Membranes", Membrane Journal, 18, 185 (2008).
  16. S. W. Nam, K. S. Jang, and C. K. Yeom, "Recycling of Acidic Etching Waste Solution Containing Heavy Metals by Nanofiltration (II) : Deadend Nanofiltration of PCB Etching Waste Solution Containing Copper Ion", Membrane Journal, 23, 92 (2013).