Hydrolyzed PAN Hollow Fiber PVA Composite Membrane for Pervaporation Separation of Water-ethanol Mixtures

가수분해된 PAN 중공사 PVA 복합막을 이용한 물-에탄올 계의 투과증발 분리

  • Kang, Su Yeon (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Kim, So Yeon (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Cheong, Seong Ihl (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Seo, Chang Hee (ENE Co. Ltd.) ;
  • Park, Hun Whee (ENE Co. Ltd.) ;
  • Rhim, Ji Won (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University)
  • 강수연 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 김소연 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 정성일 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 서창희 ((주)이엔이) ;
  • 박헌휘 ((주)이엔이) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과)
  • Received : 2013.08.01
  • Accepted : 2013.08.26
  • Published : 2013.08.30

Abstract

Poly(vinyl alcohol) (PVA) coating solution containing glutaraldehyde (GA) and maleic anhydride (MA) as crosslinking agents was coated onto hydrolyzed poly acrylonitrile (PAN) hollow fiber membranes. The permselectivities of the resulting composite membranes prepared varying the reaction temperature and the concentration of the crosslinking agents were tested for 90 wt% ethanol aqueous mixtures by the pervaporation technique at $60^{\circ}C$. In general, the flux decreased while the selectivity increased for the increases of the reaction temperature and the crosslinking concentration. In case of GA as a crosslinking, the flux $165g/m^2hr$ and the separation factor 81 were obtained at GA 11 wt% and the reaction temperature $120^{\circ}C$. And for the case of MA, the flux $174g/m^2hr$ and the separation factor 73 were obtained at MA 11 wt% and the reaction temperature $120^{\circ}C$.

Poly(vinyl alcohol) (PVA)에 대하여 가교제로써 glutaraldehyde (GA), maleic anhydride (MA)를 이용하여 제조한 코팅용액을 알칼리로 가수분해 시킨 poly acrylonitrile (PAN) 중공사 막표면에 코팅하여 막을 제조하였다. 제조된 막의 투과특성평가를 위해서 물/에탄올 혼합액에 대한 투과증발 실험을 수행하였다. $60^{\circ}C$의 90 wt%의 물/에탄올 혼합액에 대하여 반응온도 및 가교제의 농도변화에 따른 투과도 및 선택도를 측정하였다. 일반적으로 반응온도, 가교제 농도가 증가할 경우 투과도는 낮아지고, 선택도는 증가하는 경향을 보여주었다. 가교제로 GA의 대표적 결과는 반응온도 $120^{\circ}C$, GA 11 wt%로 투과도는 $165g/m^2hr$ 선택도는 81이고, MA는 반응온도 $120^{\circ}C$, MA 11 wt%로 투과도는 $174g/m^2hr$ 선택도는 73의 결과를 얻을 수 있었다.

Keywords

References

  1. Y. J. Oh, H. S. Ahn, H. R. Lee, and Y. T. Lee, "Pervaporation of Ketone from Water Using Silicalite- 1 Membrane", Membrane Journal, 13(4), 229 (2003).
  2. Y. T. Park, H. S. Chio, and S. T. Nam, "The Preparation of a Polyimide Membrane for the Separation of Water-Acetic Acid Mixture through Pervaporation", Membrane Journal, 9(4), 215 (1999).
  3. Y. K. Kim and J. M. Lee, "Characterization of Crosslinked Poly(vinyl alcohol) Membranes for the Preparation of Composite Membranes and Its Application to Pervaporation Separation", Membrane Journal, 9(3), 157 (1999).
  4. A. Higuchi, N. Iwata, M. Tsubaki, and T. Nakagawa, "Surfacemodified polysulfone hollow fibers", J. Appl. Polym. Sci., 36, 1753-1767 (1988). https://doi.org/10.1002/app.1988.070360804
  5. A. Higuchi, S. Mishima, and T. Nakagawa, "Separation ofproteins by surface modified polysulfone membranes", J. Membr. Sci., 57, 175-185 (1991). https://doi.org/10.1016/S0376-7388(00)80677-8
  6. S. Nakao, H. Osada, H. Kurata, T. Tsuru, and S. Kimura, "Separation of proteins by charged ultrafiltration membranes, Desalination", 70, 191-205 (1988).
  7. B. S. Lee, D. H. Kim, and J. W. Rhim, "Pervaporation Separation of Water-Ethanil Mixture Using Crosslinked PVA/PSSA_MA/TEOS Hybrid Membranes", Membrane Journal, 18(1), 44-52 (2008).
  8. M. C. Yang and J. H. Tong, "Loose ultrafiltration of proteins using hydrolyzed polyacrylonitrile hollow fiber" J. Membr. Sci., 132, 63-71 (1997). https://doi.org/10.1016/S0376-7388(97)00038-0
  9. O. Trifunovic and G. Tragardh, "The influence ofsupport layer on mass transport of homologous series of alcohols and esters through composite pervaporation membranes", J. Membr. Sci., 259, 122 (2005). https://doi.org/10.1016/j.memsci.2005.03.011
  10. E. S. Chio and J. H. Kim, "Modealing and Characteristics of Ethanol Fermentation Process Combined with Pervaporation" Korean Journal of Applied Microbiology and Biotechnology, 20(4), 451 (1992).
  11. S. Y. Nam, K. S. Sung, S. W. Chon, and J. W. Rhim, "Pervaporation Separation of Aqueous Ethanol Solution Through Poly(vinyl alcohol) Membranes Crosslinked Poly(acrylic acid-co-maleic acid)", Membrane Journal, 12(4), 255 (2002).
  12. S. G. Kim, Y. I. Kim, G. T. Lim, and S. W. Park, "Pervaporation Characteristics of Water/ethanol Mixtures using PVA Membranes Crosslinked with Poly(styrene-maleic anhydride)", Chem. Eng. Sci., 10(3), 374 (1999).
  13. R. Y. M. Hiang, R. Pal, and G. Y. Moon, "Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol-water and isopropanol- water mixtures", J. Membr. Sci., 160(1), 101 (1999). https://doi.org/10.1016/S0376-7388(99)00071-X
  14. J. S. Kim, E. H. Cho, S. Y. Kang, and J. W. Rhim, "Pervaporation Separation of Water-Isopropyl Alcohol Mixtures Using PVA/PAN Hollow Fiber Composite Membrane", Membrane Journal, 23(2), 170 (2013).
  15. L. Y. Jiang, T.-S. Chung, and R. Rajagoplan, "Dehydration of Alcohols by Pervaporation Through Polyimide Matrimid${\circledR}$ Asymmetric Hollow Fibers with Various Modifications", Chem. Eng. Sci., 63(1), 204 (2008). https://doi.org/10.1016/j.ces.2007.09.026
  16. H. S. Ahn, H. R. Lee, and Y. T. Lee, "Pervaporation Characteristics of Water/Ethanol Mixture through Hydrophilic Zeolite Membranes", Chem. Eng. Sci., 16(1), 61 (2005).
  17. A. Higuchi, N. Iwata, M. Tsubaki, and T. Nakagawa, "Surfacemodified polysulfone hollow fibers", J. Appl. Polym. Sci., 36, 1753-1767 (1988). https://doi.org/10.1002/app.1988.070360804
  18. A. Higuchi, S. Mishima, and T. Nakagawa, "Separation ofproteins by surface modified polysulfone membranes", J. Membr. Sci., 57, 175-185 (1991). https://doi.org/10.1016/S0376-7388(00)80677-8
  19. S. Nakao, H. Osada, H. Kurata, T. Tsuru, and S. Kimura, "Separation of proteins by charged ultrafiltration membranes, Desalination", 70, 191-205 (1988).
  20. O. Trifunovic and G. Trägardh, "The influence ofsupport layer on mass transport of homologous series of alcohols and esters through composite pervaporation membranes", J. Membr. Sci., 259, 122 (2005). https://doi.org/10.1016/j.memsci.2005.03.011
  21. E. S. Chio and J. H. Kim, "Modealing and Characteristics of Ethanol Fermentation Process Combined with Pervaporation", Korean Journal of Applied Microbiology and Biotechnology, 20(4), 451 (1992).
  22. S. Y. Nam, K. S. Sung, S. W. Chon, and J. W. Rhim, "Pervaporation Separation of Aqueous Ethanol Solution Through Poly(vinyl alcohol) Membranes Crosslinked Poly(acrylic acid-co-maleic acid)", Membrane Journal, 12(4), 255 (2002).
  23. S. G. Kim, Y. I. Kim, G. T. Lim, and S. W. Park, "Pervaporation Characteristics of Water/ethanol Mixtures using PVA Membranes Crosslinked with Poly (styrene - maleic anhydride)", Chem. Eng. Sci., 10(3), 374 (1999).
  24. M. Khayet, "Membrane surface modification and characterization by X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements", Apllied Surface Sci., 238, 269 (2004). https://doi.org/10.1016/j.apsusc.2004.05.259
  25. J. W. Rhim and Y. K. Kim, "Pervaporation separation of MTBE-Methanol Mixtures using crosslinked PVA Membranes", J. Appl. Polym. Sci., 75, 1699 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000401)75:14<1699::AID-APP3>3.0.CO;2-O