Coating of Poly(ethylene glycol) for Prevention of Biofilm Formation on the Surface of Polyethylene Ventilation Devices

  • Kim, Bumchul (Department of Chemical and Biological Engineering, College of Energy & Biotechnology, Seoul National University of Science and Technology) ;
  • Oh, Seung Jin (Department of Chemical and Biological Engineering, College of Energy & Biotechnology, Seoul National University of Science and Technology) ;
  • Lee, Suyeon (Department of Chemical and Biological Engineering, College of Energy & Biotechnology, Seoul National University of Science and Technology) ;
  • Song, Jae Jun (Department of Otorhinolaryngology-Head & Neck Surgery Dongguk University Ilsan Hospital) ;
  • Kim, Sung Min (Department of Medical Biotechnology, College of Life Sciences and Biotechnology, Dongguk University) ;
  • Han, Dong Keun (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Noh, Insup (Department of Chemical and Biological Engineering, College of Energy & Biotechnology, Seoul National University of Science and Technology)
  • Published : 2013.06.01

Abstract

To improve the biocompatibility of the polyethylene (PE) ventilation tubes for its applications in otolaryngology, poly(ethylene glycol)-acrylate (PEG-acrylate) was coated for prevention of biofilm formation via proteins adsorption on the PE surface. The PE film was surface-modified in advance with plasma treatment with oxygen and argon gases on the PE surfaces in film and tube types. PEG-acrylates was radical polymerized on the plasma-treated PE samples. The surface-modified samples were analyzed chemically with ATR-FTIR and XPS, and physically with SEM observation and contact angle measurement. While ATR-FTIR, XPS and SEM results showed new chemical peaks and smooth surface morphologies similar to those of the untreated controls, in vitro cultures of fibroblasts and bacteria showed less adhesion in vitro on the film samples than those of the unmodified control. The evaluations of the PE samples in tube type also showed reduction of adhesion of both cells and bacteria in rats on both the plasmatreated and PEG graft-polymerized surfaces compared to those of the untreated PE surfaces, indicating reduction of biofilms. Surface modification with oxygen plasma treatment and graft polymerization of PEG-acrylate on the PE tubes seemed to be an excellent technique for prevention of biofilm in ventilation tubes.

Keywords

References

  1. R. D. Gross, L. P. Burgess, M. R. Holtel, D. J. Hall, M. Ramsey, P. D. Tsai, and D. Birkmire-Peters, "Saline irrigation in the prevention of otorrhea after tympanostomy tube placement," Laryngoscope, 110(2), 246-249 (2000).
  2. F. A. Inglis, Tympanostomy tubes, C. W. Cummings, J. M. Frederickson, L. A. Harker, C. J. Krause, D. E. Shuller, M. A. Richardson (Eds.), "Otolaryngology Head and Neck Surgery Pediatric," Volume third ed., Mosby-Year Book, St. Louis, Missouri, 1998, pp. 478-487.
  3. E. C. Tatar, F. O. Unal, I. Tatar, H. H. Celik, and B. Gursel, "Investigation of surface changes in different types of ventilation tubes using scanning electron microscopy and correlation of findings with clinical follow-up," Int. J. Pediatr. Otorhi., 70(3), 411-417 (2006). https://doi.org/10.1016/j.ijporl.2005.07.005
  4. J. F. Biedlingmaier, R. Samaranayake, and P. Whelan, "Resistance to biofilm formation on otologic implant materials," Otolaryngol. Head Neck Surg., 118(4), 444-451 (1998).
  5. J. Rayner, R. Veeh, and J. Flood, "Prevalence of microbial biofilms on selected fresh produce and household surfaces," Int. J. Food Microbiol., 95(1), 29-39 (2004). https://doi.org/10.1016/j.ijfoodmicro.2004.01.019
  6. A. Pajkos, K. Vickery, and Y. Cossart, "Is biofilm accumulation on endoscope tubing a contributor to the failure of cleaning and decontamination?," J. Hosp. Infect., 58(3), 224-229 (2004). https://doi.org/10.1016/j.jhin.2004.06.023
  7. C. Oehr, "Plasma surface modification of polymers for biomedical use," Nucl. Instr. And Meth. in Phys. Res. B, 208, 40-47 (2003). https://doi.org/10.1016/S0168-583X(03)00650-5
  8. D. L. Elbert and J. A. Hubbell, "Surface treatments of polymers for biocompatibility," Ann. Rev. Mater. Sci., 26(1), 365-394 (1996). https://doi.org/10.1146/annurev.ms.26.080196.002053
  9. B. D. Ratner, T. A. Horbett, S. Ertel, A. Chilkoti, and J. Chinn, "Cell attachment and growth on Rf-plasma deposited surfaces," Abstr. Pap. Am. Chem. Soc., 195, 143 (1988) .
  10. P. Favia and R. d'Agostino, "Plasma treatments and plasma deposition of polymers for biomedical applications," Surf. Coat. Technol., 98(1), 1102-1106 (1998). https://doi.org/10.1016/S0257-8972(97)00285-5
  11. Loh and I. Houng, "AST Technical Journal."
  12. P. K. Chu, J. Y. Chen, L. P. Wang, and N. Huang, "Plasma-surface modification of biomaterials," Mater. Sci. Eng., 36(5), 143-206 (2002). https://doi.org/10.1016/S0927-796X(02)00004-9
  13. S. N. Hwang and I. H. Jung, "Plasma Surface Modification of Plasma Polymerized Trifluoromethane Films," hwahak konghak, 36(4), 530-535 (1998).
  14. M. Suzuki, A. Kishida, H. Iwata, and Y. Ikada, "Graft copolymerization of acrylamide onto a polyethylene surface pretreated with glow discharge," Macromolecules, 19(7), 1804-1808 (1986). https://doi.org/10.1021/ma00161a005
  15. C. M. Alves, Y. Yang, D. Marton, D. L. Carnes, J. L. Ong, V. L. Sylvia, D. D. Dean, R. L. Reis, and C. M. Agrawal, "Plasma surface modification of poly(D, L-lactic acid) as a tool to enhance protein adsorption and the attachment of different cell types," J. Biomed. Mater. Res B. Appl. Biomater., 87(1), 59-66 (2008).
  16. H. Yasuda and M. Gazicki, "Biomedical applications of plasma polymerization and plasma treatment of polymer surfaces," Biomaterials, 3(2), 68-77 (1982). https://doi.org/10.1016/0142-9612(82)90036-9
  17. L. H. Song, S. H. Park, S. H. Jung, S. D. Kim, and S. B. Park, "Synthesis of polyethylene glycol-polystyrene core-shell structure particles in a plasma-fluidized bed reactor," Korean J. Chem. Eng., 28(2), 627-632 (2011). https://doi.org/10.1007/s11814-010-0390-5
  18. J. Zhou, A. V. Ellis, and N. H. Voelcker, "Poly(dimethylsiloxane) surface modification by plasma treatment for DNA hybridization applications," J. Nanosci. Nanotechno., 10(11), 7266-7270 (2010). https://doi.org/10.1166/jnn.2010.2826
  19. N. L. Singh, A. Qureshi, N. Shah, A. K. Rakshit, S. Mukherjee, A. Tripathi, and D. K. Avasthi, "Surface modification of polyethylene terephthalate by plasma treatment," Radiat. Meas., 40(2), 746-749 (2005). https://doi.org/10.1016/j.radmeas.2005.01.014
  20. Y. Wan, J. Yang, J. Yang, J. Bei, and S. Wang, "Cell adhesion on gaseous plasma modified poly-(L-lactide) surface under shear stress field," Biomaterials, 24(21), 3757-3764 (2003). https://doi.org/10.1016/S0142-9612(03)00251-5
  21. J. Yang, G. Shi, J. Bei, S. Wang, Y. Cao, Q. Shang, G. Yang, and W. Wang, "Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture," J. Biomed. Mater. Res., 62(3), 438-446 (2002). https://doi.org/10.1002/jbm.10318
  22. N. De Geyter, R. Morent and C. Leys, "Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy," Surf. Interface Anal., 40(3-4), 608- 611 (2008). https://doi.org/10.1002/sia.2611
  23. A. G. Gibb, "Long-term assessment of ventilation tubes," J. Laryngol. Otol., 94, 39-51 (1980). https://doi.org/10.1017/S0022215100088447
  24. J. P. Vard, D. J. Kelly, A. W. Blayney, and P. J. Prendergast, "The influence of ventilation tube design on the magnitude of stress imposed at the implant/tympanic membrane interface," Med. Eng. Phys., 30(2), 154-163 (2008). https://doi.org/10.1016/j.medengphy.2007.03.005
  25. E. C. Tatar, F. O. Unal, I. Tatar, H. H. Celik, and B. Gursel, "Investigation of surface changes in different types of ventilation tubes using scanning electron microscopy and correlation of findings with clinical follow-up," Int. J. P. Pediatr. Otorhi., 70(3), 411-417 (2006). https://doi.org/10.1016/j.ijporl.2005.07.005
  26. J. F. Biedlingmaier, R. Samaranayade, and P. Whelan, "Resistance to biofilm formation on cotologic implant materials," Otolaryng. Head. Neck., 118(4), 444-451 (1998).
  27. I. S. Saidi, J. F. Biedlingmaier, and P. Whelan, "In vivo resistance to bacterial biofilm formation on tympanostomy tubes as a function of tube material," Otolaryng. Head. Neck., 120(5), 621-627 (1999). https://doi.org/10.1053/hn.1999.v120.a94162
  28. N. P. Desai, S. F. A. Hossainy, and J. A. Hubbell, "Surface-immobilized polyethylene oxide for bacterial repellence," Biomaterials, 13(7), 417-420 (1992). https://doi.org/10.1016/0142-9612(92)90160-P
  29. S. Zanini, M. Orlandi, C. Colombo, E. Grimoldi, and C. Riccardi, "Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates," Eur. Phys. J. D., 54(2), 159-164 (2009). https://doi.org/10.1140/epjd/e2008-00217-9
  30. M. S. Sheu, A. S. Hoffman, and J. Feijen, "A glow-discharge treatment to immobilize poly (ethylene oxide)/poly (propylene oxide) surfactants for wettable and non-fouling biomaterials," J. Adhes. Sci. Tech., 6(9), 995-1009 (1992). https://doi.org/10.1163/156856192X00890
  31. F. Zhang, E. T. Kang, W. Neoh, P. Wang, and K. L. Tan, "Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption," J. Biomed. Mater. Res., 22(12), 1541-1548 (2001).
  32. N. P. Desai and J. A. Hubbell, "Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials," Biomaterials, 12(2), 144-153 (1991). https://doi.org/10.1016/0142-9612(91)90193-E