References
- R. D. Gross, L. P. Burgess, M. R. Holtel, D. J. Hall, M. Ramsey, P. D. Tsai, and D. Birkmire-Peters, "Saline irrigation in the prevention of otorrhea after tympanostomy tube placement," Laryngoscope, 110(2), 246-249 (2000).
- F. A. Inglis, Tympanostomy tubes, C. W. Cummings, J. M. Frederickson, L. A. Harker, C. J. Krause, D. E. Shuller, M. A. Richardson (Eds.), "Otolaryngology Head and Neck Surgery Pediatric," Volume third ed., Mosby-Year Book, St. Louis, Missouri, 1998, pp. 478-487.
- E. C. Tatar, F. O. Unal, I. Tatar, H. H. Celik, and B. Gursel, "Investigation of surface changes in different types of ventilation tubes using scanning electron microscopy and correlation of findings with clinical follow-up," Int. J. Pediatr. Otorhi., 70(3), 411-417 (2006). https://doi.org/10.1016/j.ijporl.2005.07.005
- J. F. Biedlingmaier, R. Samaranayake, and P. Whelan, "Resistance to biofilm formation on otologic implant materials," Otolaryngol. Head Neck Surg., 118(4), 444-451 (1998).
- J. Rayner, R. Veeh, and J. Flood, "Prevalence of microbial biofilms on selected fresh produce and household surfaces," Int. J. Food Microbiol., 95(1), 29-39 (2004). https://doi.org/10.1016/j.ijfoodmicro.2004.01.019
- A. Pajkos, K. Vickery, and Y. Cossart, "Is biofilm accumulation on endoscope tubing a contributor to the failure of cleaning and decontamination?," J. Hosp. Infect., 58(3), 224-229 (2004). https://doi.org/10.1016/j.jhin.2004.06.023
- C. Oehr, "Plasma surface modification of polymers for biomedical use," Nucl. Instr. And Meth. in Phys. Res. B, 208, 40-47 (2003). https://doi.org/10.1016/S0168-583X(03)00650-5
- D. L. Elbert and J. A. Hubbell, "Surface treatments of polymers for biocompatibility," Ann. Rev. Mater. Sci., 26(1), 365-394 (1996). https://doi.org/10.1146/annurev.ms.26.080196.002053
- B. D. Ratner, T. A. Horbett, S. Ertel, A. Chilkoti, and J. Chinn, "Cell attachment and growth on Rf-plasma deposited surfaces," Abstr. Pap. Am. Chem. Soc., 195, 143 (1988) .
- P. Favia and R. d'Agostino, "Plasma treatments and plasma deposition of polymers for biomedical applications," Surf. Coat. Technol., 98(1), 1102-1106 (1998). https://doi.org/10.1016/S0257-8972(97)00285-5
- Loh and I. Houng, "AST Technical Journal."
- P. K. Chu, J. Y. Chen, L. P. Wang, and N. Huang, "Plasma-surface modification of biomaterials," Mater. Sci. Eng., 36(5), 143-206 (2002). https://doi.org/10.1016/S0927-796X(02)00004-9
- S. N. Hwang and I. H. Jung, "Plasma Surface Modification of Plasma Polymerized Trifluoromethane Films," hwahak konghak, 36(4), 530-535 (1998).
- M. Suzuki, A. Kishida, H. Iwata, and Y. Ikada, "Graft copolymerization of acrylamide onto a polyethylene surface pretreated with glow discharge," Macromolecules, 19(7), 1804-1808 (1986). https://doi.org/10.1021/ma00161a005
- C. M. Alves, Y. Yang, D. Marton, D. L. Carnes, J. L. Ong, V. L. Sylvia, D. D. Dean, R. L. Reis, and C. M. Agrawal, "Plasma surface modification of poly(D, L-lactic acid) as a tool to enhance protein adsorption and the attachment of different cell types," J. Biomed. Mater. Res B. Appl. Biomater., 87(1), 59-66 (2008).
- H. Yasuda and M. Gazicki, "Biomedical applications of plasma polymerization and plasma treatment of polymer surfaces," Biomaterials, 3(2), 68-77 (1982). https://doi.org/10.1016/0142-9612(82)90036-9
- L. H. Song, S. H. Park, S. H. Jung, S. D. Kim, and S. B. Park, "Synthesis of polyethylene glycol-polystyrene core-shell structure particles in a plasma-fluidized bed reactor," Korean J. Chem. Eng., 28(2), 627-632 (2011). https://doi.org/10.1007/s11814-010-0390-5
- J. Zhou, A. V. Ellis, and N. H. Voelcker, "Poly(dimethylsiloxane) surface modification by plasma treatment for DNA hybridization applications," J. Nanosci. Nanotechno., 10(11), 7266-7270 (2010). https://doi.org/10.1166/jnn.2010.2826
- N. L. Singh, A. Qureshi, N. Shah, A. K. Rakshit, S. Mukherjee, A. Tripathi, and D. K. Avasthi, "Surface modification of polyethylene terephthalate by plasma treatment," Radiat. Meas., 40(2), 746-749 (2005). https://doi.org/10.1016/j.radmeas.2005.01.014
- Y. Wan, J. Yang, J. Yang, J. Bei, and S. Wang, "Cell adhesion on gaseous plasma modified poly-(L-lactide) surface under shear stress field," Biomaterials, 24(21), 3757-3764 (2003). https://doi.org/10.1016/S0142-9612(03)00251-5
- J. Yang, G. Shi, J. Bei, S. Wang, Y. Cao, Q. Shang, G. Yang, and W. Wang, "Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture," J. Biomed. Mater. Res., 62(3), 438-446 (2002). https://doi.org/10.1002/jbm.10318
- N. De Geyter, R. Morent and C. Leys, "Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy," Surf. Interface Anal., 40(3-4), 608- 611 (2008). https://doi.org/10.1002/sia.2611
- A. G. Gibb, "Long-term assessment of ventilation tubes," J. Laryngol. Otol., 94, 39-51 (1980). https://doi.org/10.1017/S0022215100088447
- J. P. Vard, D. J. Kelly, A. W. Blayney, and P. J. Prendergast, "The influence of ventilation tube design on the magnitude of stress imposed at the implant/tympanic membrane interface," Med. Eng. Phys., 30(2), 154-163 (2008). https://doi.org/10.1016/j.medengphy.2007.03.005
- E. C. Tatar, F. O. Unal, I. Tatar, H. H. Celik, and B. Gursel, "Investigation of surface changes in different types of ventilation tubes using scanning electron microscopy and correlation of findings with clinical follow-up," Int. J. P. Pediatr. Otorhi., 70(3), 411-417 (2006). https://doi.org/10.1016/j.ijporl.2005.07.005
- J. F. Biedlingmaier, R. Samaranayade, and P. Whelan, "Resistance to biofilm formation on cotologic implant materials," Otolaryng. Head. Neck., 118(4), 444-451 (1998).
- I. S. Saidi, J. F. Biedlingmaier, and P. Whelan, "In vivo resistance to bacterial biofilm formation on tympanostomy tubes as a function of tube material," Otolaryng. Head. Neck., 120(5), 621-627 (1999). https://doi.org/10.1053/hn.1999.v120.a94162
- N. P. Desai, S. F. A. Hossainy, and J. A. Hubbell, "Surface-immobilized polyethylene oxide for bacterial repellence," Biomaterials, 13(7), 417-420 (1992). https://doi.org/10.1016/0142-9612(92)90160-P
- S. Zanini, M. Orlandi, C. Colombo, E. Grimoldi, and C. Riccardi, "Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates," Eur. Phys. J. D., 54(2), 159-164 (2009). https://doi.org/10.1140/epjd/e2008-00217-9
- M. S. Sheu, A. S. Hoffman, and J. Feijen, "A glow-discharge treatment to immobilize poly (ethylene oxide)/poly (propylene oxide) surfactants for wettable and non-fouling biomaterials," J. Adhes. Sci. Tech., 6(9), 995-1009 (1992). https://doi.org/10.1163/156856192X00890
- F. Zhang, E. T. Kang, W. Neoh, P. Wang, and K. L. Tan, "Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption," J. Biomed. Mater. Res., 22(12), 1541-1548 (2001).
- N. P. Desai and J. A. Hubbell, "Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials," Biomaterials, 12(2), 144-153 (1991). https://doi.org/10.1016/0142-9612(91)90193-E