DOI QR코드

DOI QR Code

불확실한 pure-feedback 비선형 계통에 대한 출력 궤환 적응 신경망 제어기

Adaptive Output-feedback Neural Control of uncertain pure-feedback nonlinear systems

  • 박장현 (목포대학교 제어로봇공학과) ;
  • 김성환 (목포대학교 제어로봇공학과) ;
  • 장영학 (목포대학교 제어로봇공학과) ;
  • 유영재 (목포대학교 제어로봇공학과)
  • Park, Jang-Hyun (Dept. of Control Engineering and Robotics, Mokpo National University) ;
  • Kim, Seong-Hwan (Dept. of Control Engineering and Robotics, Mokpo National University) ;
  • Jang, Young-Hak (Dept. of Control Engineering and Robotics, Mokpo National University) ;
  • Ryoo, Young-Jae (Dept. of Control Engineering and Robotics, Mokpo National University)
  • 투고 : 2013.02.26
  • 심사 : 2013.12.06
  • 발행 : 2013.12.25

초록

본 논문은 불확실한 연속시 단일입력 단일출력 pure-feedback 비선형 계통에 대해서 참고문헌 [15]에서 제안된 상태변수 궤환 적응 신경망 제어 알고리듬을 바탕으로 출력만이 측정 가능한 계통에 적용할 수 있는 출력 궤환 제어기를 제시한다. 고려하는 계통에 대한 출력 궤환 적응 신경망 제어기는 이 분야에서 아직까지 어느 문헌에서도 다루지 않은 주제이다. 제안된 출력 궤환 제어기는 백스테핑을 회피하여 상대적으로 간결한 제어 규칙과 단 하나의 신경망만이 사용된다는 [15]의 장점을 그대로 계승하며 적용되는 비선형 계통의 범주를 더 넓힌다는 의미를 가진다.

Based on the state-feedback adaptive neuro-control algorithm for a SISO nonaffine pure-feedback nonlinear system proposed in [15], an output-feedback controller is proposed in this paper. The output-feedback adaptive neural-net controller for the considered nonlinear system has not been previously proposed in any other literatures yet. The proposed output-feedback controller inherits all the advantages of [15] such that it does not adopt backstepping and this results in relatively simple control and adapting laws. Only one neural network is required for the proposed adaptive controller. The proposed neural-net control scheme expands the applicable class of nonlinear systems.

키워드

참고문헌

  1. E. Tzirkel-Hancock, F. Fallside,"Stable control of nonlinear systems using neural networks," Robust and Nonlinear Control , vol. 2, pp. 63-68, 1992. https://doi.org/10.1002/rnc.4590020105
  2. A. Yesildirek, F. L. Lewis,"Feedback linearization using neural network," Automatica, vol. 31, no. 11, pp. 1659-1664, 1995. https://doi.org/10.1016/0005-1098(95)00078-B
  3. S. Fabri, V. Kadirkamanathan, "Dynamic structure neural networks for stable adaptive control of nonlinear system," IEEE Trans. Neural Networks, vol. 7, no. 5, pp. 1151-1167, 1996. https://doi.org/10.1109/72.536311
  4. J. T. Spooner, K. M. Passino,"Stalbe adaptive control using fuzzy systems and neural networks," IEEE Trans. Fuzzy Systems, vol. 4, no. 3, pp. 339-359, 1996. https://doi.org/10.1109/91.531775
  5. S. N. Huang, K. K. Tan, and T. H. Lee,"Futher results on adaptive control for a class of nonlinear systmes using neural networks," IEEE Trans. Neural Networks, vol. 14, no. 3, pp. 719-722, 2003. https://doi.org/10.1109/TNN.2003.811712
  6. S. S. Ge and C. C. Hang and T. Zhang,"Adaptive neural network control of nonlinear systems by state and output feedback," IEEE Trans. Systems, Man and Cybernetics-Part B:Cybernetics, vol. 29, no. 6, pp. 818-828, 1999. https://doi.org/10.1109/3477.809035
  7. A. J. Calise, N. Hovakimyan, M. Idan,"Adaptive output feedback control of nonlinear systems using neural networks," Automatica, vol. 37, no. 1, pp. 1201-1211, 2001. https://doi.org/10.1016/S0005-1098(01)00070-X
  8. J.-H. Park, S.-H. Huh, S.-H. Kim, G.-T. Park,"Direct Adaptive Controller for Nonaffine Nonlinear Systems Using Self-Structuring Neural Networks," IEEE Trans. Neural Networks, vol. 16, no. 2, pp. 414-422, 2005. https://doi.org/10.1109/TNN.2004.841786
  9. I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse,"Systematic design of adaptive controllers for feedback linearizable systems," IEEE Trans. Autom. Control , vol. 36, no. 11, pp. 1241-1253, 1991. https://doi.org/10.1109/9.100933
  10. M. U. Polycarpou and M. J. Mears, "Stable adaptive tracking of uncertain systems using nonlinearly parameterized on-line approximators," Int. J . Control, vol. 70, no. 3, pp. 363-384, 1998. https://doi.org/10.1080/002071798222280
  11. Y. Li, S. Qiang, X. Zhuang, O. Kaynak, "Robust and adaptive backstepping control for nonlinear systems using RBF neural networks," IEEE Trans. Neural Networks, vol. 15, no. 3, pp. 693-7001, 2004. https://doi.org/10.1109/TNN.2004.826215
  12. S. S. Ge, C. Wang, "Direct adaptive NN control of a class of nonlinear systems," IEEE Trans. Neural Networks, vol. 13, no. 1, pp. 214-221, 2002. https://doi.org/10.1109/72.977306
  13. J. Q. Gong, B. Yao,"Neural network adaptive robust control of nonlinear systems in semi-strict feedback form," Automatica, vol. 37, pp. 1149-1160, 2001. https://doi.org/10.1016/S0005-1098(01)00069-3
  14. J.-H. Park, S.-H. Kim, C.-J. Moon, "Adaptive Control for Strict-Feedback Nonlinear Systems Without Backstepping," IEEE Trans. Neural Networks, vol. 20, no. 7, pp. 1204-1209, 2009. https://doi.org/10.1109/TNN.2009.2020982
  15. J.-H. Park, S.-H. Kim, Y.-H, Chang, "Adaptive Neural Control of Nonlinear Pure-feedback Systems." Journal of IKEEE, vol. 14, no. 3, pp. 10-17, 2010.
  16. S. S. Ge, C. Wang, "Adaptive nn control of uncertain nonlinear pure-feedback systems," Automatica, vol. 38, pp. 671-682, 2002. https://doi.org/10.1016/S0005-1098(01)00254-0
  17. D. Wang, J. Huang, "Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form," Automatica, vol. 38, pp. 1365-1372, 2002. https://doi.org/10.1016/S0005-1098(02)00034-1
  18. C. Wang, D. J. Hill, and S. S. Ge, G. Chem "An ISS-modular approach for adaptive neural control of pure-feedback systems," Automatica, vol. 42, pp. 723-732, 2006. https://doi.org/10.1016/j.automatica.2006.01.004
  19. T. P. Zhang, S. S. Ge, "Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure-feedback form," Autimatica, vol. 44, pp. 1895-1903, 2008. https://doi.org/10.1016/j.automatica.2007.11.025
  20. B. Ren, S. S. Ge, C.-Y. Su, T. H. Lee, "Adaptive Neural Control for a Class of Uncertain Nonlinear Systems in Pure-Feedback Form with Hysteresis Input," IEEE Trans. Sys. man, and Cybern.-part B:Cybern, vol , no , pp, 2008.
  21. J.-J. E. Slotine, W. Li, Applied Nonlinear Control, Prentice Hall, 1991.
  22. S. Behatsh,"Robust output tracking for nonlinear systems," Int. J . Control, vol. 51, no. 6, pp. 1381-1407, 1990. https://doi.org/10.1080/00207179008934141
  23. J.-H. Park, S.-H. Kim, and C.-J. Moon, "Adaptive Neural Control for Strict-Feedback Nonlinear Systems Without Backstepping," IEEE Trans. Neural Networks, vol. 20, no. 7, pp. 1204-1209, 2009. https://doi.org/10.1109/TNN.2009.2020982
  24. B. Ren, et. al., "Adaptive Neural Control for a Class of Uncertain Nonlinear Systems in Pure-Feedback Form With Hysteresis Input," IEEE Trans. Systems, Man, and Cybernetics-Part B:Cybernetics, vol. 39, no. 2, pp. 431-443,2009. https://doi.org/10.1109/TSMCB.2008.2006368
  25. M. Wang, S. S. Ge, and K.-S. Hong, "Approximation-Based Adaptive Tracking Control of Pure-Feedback Nonlinear Systems with Multiple Unknown Time-Varying Delays," IEEE Trans. Neural Networks, vol. 21, no. 11, pp. 1804-1816, 2010. https://doi.org/10.1109/TNN.2010.2073719
  26. J Park, I. W. Sandberg, "Universal Approximation Using Radial-Basis-Function Networks," Neural Computation, vol. 3, pp. 246-257, 1991. https://doi.org/10.1162/neco.1991.3.2.246
  27. H. K. Khalil, Nonlinear Systems, Macmillan Publishing Company, 1992.