Abstract
Big Data is data of big size which is not processed, collected, stored, searched, analyzed by the existing database management system. The parallel genetic algorithm using the Hadoop for BigData technology is easily realized by implementing GA(Genetic Algorithm) using MapReduce in the Hadoop Distribution System. The previous study that the genetic algorithm using MapReduce is proposed suitable transforming for the GA by MapReduce. However, they did not show good performance because of frequently occurring data input and output. In this paper, we proposed the MRPGA(MapReduce Parallel Genetic Algorithm) using improvement Map and Reduce process and the parallel processing characteristic of MapReduce. The optimal solution can be found by using the topology, migration of parallel genetic algorithm and local search algorithm. The convergence speed of the proposal method is 1.5 times faster than that of the existing MapReduce SGA, and is the optimal solution can be found quickly by the number of sub-generation iteration. In addition, the MRPGA is able to improve the processing and analysis performance of Big Data technology.
빅 데이터는 일반적으로 사용되는 데이터 관리 시스템으로 데이터의 처리, 수집, 저장, 탐색, 분석을 할 수 없는 큰 규모의 데이터를 말한다. 빅 데이터 기술인 맵 리듀스(MapReduce)를 이용한 병렬 GA 연구는 Hadoop 분산처리환경을 이용하여, 맵 리듀스에서 GA를 수행함으로써 GA의 병렬처리를 쉽게 구현할 수 있다. 기존의 맵 리듀스를 이용한 GA들은 GA를 맵 리듀스에 적절히 변형하여 적용하였지만 잦은 데이터 입출력에 의한 수행시간 지연으로 우수한 성능을 보이지 못하였다. 본 논문에서는 기존의 맵 리듀스를 이용한 GA의 성능을 개선하기 위해, 맵과 리듀싱과정을 개선하여 맵 리듀스 특징을 이용한 새로운 MRPGA(MapReduce Parallel Genetic Algorithm)기법을 제안하였다. 기존의 PGA의 topology 구성과 migration 및 local search기법을 MRPGA에 적용하여 최적해를 찾을 수 있었다. 제안한 기법은 기존에 맵 리듀스 SGA에 비해 수렴속도가 1.5배 빠르며, sub-generation 반복횟수에 따라 최적해를 빠르게 찾을 수 있었다. 또한, MRPGA를 활용하여 빅 데이터 기술의 처리 및 분석 성능을 향상시킬 수 있다.