DOI QR코드

DOI QR Code

Unusual Waveform Detection Algorithm in Arrhythmia ECG Signal

부정맥 심전도 신호에서 특이 파형 검출

  • Park, Kil-Houm (School of Electronics Engineering, Kyungpook University) ;
  • Kim, Jin-Sub (School of Electronics Engineering, Kyungpook University) ;
  • Ryu, Chunha (School of Electronics Engineering, Kyungpook University) ;
  • Choi, Byung-Jae (School of Electronic and Electrical Engineering, Daegu University) ;
  • Kim, Jungjoon (School of Electronics Engineering, Kyungpook University)
  • Received : 2013.02.19
  • Accepted : 2013.08.06
  • Published : 2013.08.25

Abstract

In this paper, unusual waveform detection algorithm based on Refractory Period in arrhythmia ECG signal is proposed. Most of arrhythmia ECG signals consist of unusual waveforms with average 10% rate. Thus tremendous benefit can be obtained in terms of time and cost by providing unusual waveform samples reduced more than 90% to medical staffs who have to monitor and analyze for a long time. The proposed algorithm detects the R-peak using the features of R wave and variable refractory period. For the detected R-peak, unusual waveforms are found using means and standard deviation of electric potential and kurtosis of the R-peaks which are not included in unusual waveform. The proposed algorithm was applied to all records of the MIT-BIH arrhythmia database and showed more than average 90% of compression ratio.

본 논문에서는 불응기(Refractory Period)에 기반한 부정맥 심전도 신호의 특이 파형 검출 알고리즘을 제안한다. 부정맥 심전도 신호는 대부분 평균 10% 정도의 특이 파형을 갖는다. 따라서 장시간 심전도 신호를 관찰 및 분석해야 하는 의료진에게 심전도 신호 샘플의 90%이상이 축소된 특이 파형만을 제공함으로써 시간과 비용 측면에서 매우 큰 효과를 볼 수 있다. 제안 알고리즘은 R-파의 특징과 가변 불응기를 이용하여 R-peak를 검출한다. 검출된 R-peak에 대해 특이 파형에 포함되지 않은 R-peak들의 전위 및 첨도의 평균과 표준편차를 이용하여 특이 파형을 검출한다. 제안한 알고리즘을 MIT-BIH 부정맥 데이터베이스의 모든 레코드에 적용한 결과 평균 90% 이상의 압축률을 보였다.

Keywords

References

  1. B. Schijvennaars et al., "Intraindividual variability in electrocardiograms," Journal of Electrocardiology, Vol. 41, Iss. 3, pp. 190-196, May-June 2008. https://doi.org/10.1016/j.jelectrocard.2008.01.012
  2. H. Kim et al., "ECG signal compression and classification algorithm with quad level vector for ECG holter system," IEEE Trans. Information Technology in Biomedicine, Vol. 14, no. 1, pp. 93-100, Jan. 2010. https://doi.org/10.1109/TITB.2009.2031638
  3. SangJoon Lee, Jungkuk Kim and Myoungho Lee, "A Real-Time ECG Data Compression and Transmission Algorithm for an e-Health Device, " IEEE Transactions on Biomedical Engineering, vol. 58, no. 9, pp 2448-2455, September 2011. https://doi.org/10.1109/TBME.2011.2156794
  4. L. Y. Shyu, Y. H. Wu and W. C. Hu, "Using wavelet transform and fuzzy neural network for VPC detection from the holter ECG", IEEE Trans. Biomed. Eng., Vol.51, pp.1269-1273, 2004. https://doi.org/10.1109/TBME.2004.824131
  5. S.Kadambe, R. Murray, and G. F. B. Bartels "Wavelet Transform based QRS complex detector", IEEE Trans Biomed Eng., 46(7):838-848, 1999. https://doi.org/10.1109/10.771194
  6. Ik-Sung Cho and Hyeog-Soong Kwon, "R Wave Detection Algorithm Based Adaptive Variable Threshold and Window for PVC Classification", The Journal of Korea Information and Communication Society, Vol.34, No.11, pp.1289-1295, 2009.
  7. M. Benmalek and A. Charef, "Digital fractional order operators for R-wave detection in electrocardiogram signal," IET Signal Processing, Vol. 3, Iss. 5, pp. 381-391, May-June 2009. https://doi.org/10.1049/iet-spr.2008.0094
  8. Q. Zhang et al., "An algorithm for robust and efficient location of T-wave ends inelectrocardiograms," IEEE Trans. Biomedical Engineering, Vol. 53, no. 12, pp. 2544-2552, Dec. 2006. https://doi.org/10.1109/TBME.2006.884644
  9. J. Abenstein and W. Tompkins, "A new data reduction algorithm for real-time ECG analysis," IEEE Trans. Biomedical Engineering, Vol. BME-29, no.1, pp. 43-48, Jan. 1982. https://doi.org/10.1109/TBME.1982.324962
  10. J. Pan and W. Tompkins, "A real-time QRS detection algorithm," IEEE Trans. on Biomedical Engineering, vol. 32, no. 3, pp. 230-236, March 1985.
  11. Sung-Wan Kim, Se-Yun Kim Tae-Hun Kim, Byung-Jae Choi and Kil-Houm Park, "Minimizing Algorithm of Baseline Wander for ECG Signal using Morphology-pair," Journal of Korean Institute of Intelligent Systems, Vol.20, No.4, pp. 574-579, 2010. https://doi.org/10.5391/JKIIS.2010.20.4.574

Cited by

  1. Adaptive Detection of Unusual Heartbeat According to R-wave Distortion on ECG Signal vol.51, pp.9, 2014, https://doi.org/10.5573/ieie.2014.51.9.200