DOI QR코드

DOI QR Code

A Bumpy and Winding but Right Path to Domestic Drug-Eluting Coronary Stents

  • Cho, Jae Yeong (Korea Cardiovascular Stent Research Institute of Chonnam National University) ;
  • Ahn, Youngkeun (Korea Cardiovascular Stent Research Institute of Chonnam National University) ;
  • Jeong, Myung Ho (Korea Cardiovascular Stent Research Institute of Chonnam National University)
  • Published : 2013.10.31

Abstract

Restenosis and stent thrombosis remain major concerns after percutaneous coronary intervention for the treatment of coronary artery disease. The present review was undertaken in order to highlight the various coronary stents that have been investigated in our Heart Research Center, and how far we have come from the first heparin-coated stent first used in the late 1990s. Thereafter, from the abciximab-coated stent to the current gene-delivery stent and other newer agents, our group has applied a range of techniques in this field. However, in groups similar to ours, the restenosis rates of such stents are still high for second-generation drug-eluting stents (DESs). Moreover, our nation imports almost all of these types of stents from other countries. Thus, we need to develop domestic coronary stents. Research into newer DESs are warranted in Korea so as to achieve improved safety and efficacy outcomes.

Keywords

References

  1. Forrester JS, Fishbein M, Helfant R, Fagin J. A paradigm for restenosis based on cell biology: clues for the development of new preventive therapies. J Am Coll Cardiol 1991;17:758-69. https://doi.org/10.1016/S0735-1097(10)80196-2
  2. Austin GE, Ratliff NB, Hollman J, Tabei S, Phillips DF. Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 1985;6:369-75. https://doi.org/10.1016/S0735-1097(85)80174-1
  3. Bae Y, Jeong MH, Jang YS, et al. Comparison of porcine corinary stent restenosis between MAC (Maximum Arterial Re-Creation) and Palmaz-Schatz stent. Korean Circ J 1998;28:89-96.
  4. Giraldo AA, Esposo OM, Meis JM. Intimal hyperplasia as a cause of restenosis after percutaneous transluminal coronary angioplasty. Arch Pathol Lab Med 1985;109:173-5.
  5. Ahn YK, Jeong MH, Kim JW, et al. Preventive effects of the heparin-coated stent on restenosis in the porcine model. Catheter Cardiovasc Interv 1999;48:324-30. https://doi.org/10.1002/(SICI)1522-726X(199911)48:3<324::AID-CCD20>3.0.CO;2-K
  6. Hong YJ, Jeong MH, Ahn Y, Kang JC. The efficacy and safety of drugeluting stents in patients with acute myocardial infarction: results from Korea Acute Myocardial Infarction (KAMIR). Int J Cardiol 2013;163:1-4. https://doi.org/10.1016/j.ijcard.2012.02.003
  7. Chen KY, Rha SW, Li YJ, et al. Triple versus dual antiplatelet therapy in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Circulation 2009;119:3207-14. https://doi.org/10.1161/CIRCULATIONAHA.108.822791
  8. Park KH, Jeong MH, Lee MG, et al. What is the optimal duration of triple anti-platelet therapy in patients with acute myocardial infarction undergoing drug-eluting stent implantation? J Cardiol 2011;57:53-60. https://doi.org/10.1016/j.jjcc.2010.10.002
  9. Lake DF, Briggs AD, Akporiaye ET. Immunopharmacology. In: Katzung BG editor. Basic & Clinical pharmacology. 12th ed. New York: McGraw Hill;2012. p.985-94.
  10. Bonow RO, Mann DL, Zipes DP, Libby P, Braunwald E. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia, PA: Elsevier Saunders;2012.
  11. Capila I, Linhardt RJ. Heparin-protein interactions. Angew Chem Int Ed Engl 2002;41:391-412.
  12. Vrolix MC, Legrand VM, Reiber JH, et al. Heparin-coated Wiktor stents in human coronary arteries (MENTOR trial). MENTOR Trial Investigators. Am J Cardiol 2000;86:385-9. https://doi.org/10.1016/S0002-9149(00)00951-6
  13. Kim YJ, Kang IK, Huh MW, Yoon SC. Surface characterization and in vitro blood compatibility of poly (ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge. Biomaterials 2000;21:121-30. https://doi.org/10.1016/S0142-9612(99)00137-4
  14. Chen H, Chen Y, Sheardown H, Brook MA. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer. Biomaterials 2005;26:7418-24. https://doi.org/10.1016/j.biomaterials.2005.05.053
  15. Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. The EPIC Investigation. N Engl J Med 1994;330:956-61. https://doi.org/10.1056/NEJM199404073301402
  16. Platelet glycoprotein IIb/IIIa receptor blockade and low-dose heparin during percutaneous coronary revascularization. The EPILOG Investigators. N Engl J Med 1997;336:1689-96. https://doi.org/10.1056/NEJM199706123362401
  17. Randomised placebo-controlled trial of abciximab before and during coronary intervention in refractory unstable angina: the CAPTURE Study. Lancet 1997;349:1429-35. https://doi.org/10.1016/S0140-6736(96)10452-9
  18. Inhibition of the platelet glycoprotein IIb/IIIa receptor with tirofiban in unstable angina and non-Q-wave myocardial infarction. Platelet Receptor Inhibition in Ischemic Syndrome Management in Patients Limited by Unstable Signs and Symptoms (PRISM-PLUS) Study Investigators. N Engl J Med 1998;338:1488-97. https://doi.org/10.1056/NEJM199805213382102
  19. Tam SH, Sassoli PM, Jordan RE, Nakada MT. Abciximab (ReoPro, chimeric 7E3 Fab) demonstrates equivalent affinity and functional blockade of glycoprotein IIb/IIIa and alpha(v)beta3 integrins. Circulation 1998;98:1085-91. https://doi.org/10.1161/01.CIR.98.11.1085
  20. Reverter JC, Béguin S, Kessels H, Kumar R, Hemker HC, Coller BS. Inhibition of platelet-mediated, tissue factor-induced thrombin generation by the mouse/human chimeric 7E3 antibody. Potential implications for the effect of c7E3 Fab treatment on acute thrombosis and "clinical restenosis". J Clin Invest 1996;98:863-74. https://doi.org/10.1172/JCI118859
  21. Shappell SB, Toman C, Anderson DC, Taylor AA, Entman ML, Smith CW. Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils. J Immunol 1990; 144:2702-11.
  22. Simon DI, Xu H, Ortlepp S, Rogers C, Rao NK. 7E3 monoclonal antibody directed against the platelet glycoprotein IIb/IIIa cross-reacts with the leukocyte integrin Mac-1 and blocks adhesion to fibrinogen and ICAM-1. Arterioscler Thromb Vasc Biol 1997;17:528-35. https://doi.org/10.1161/01.ATV.17.3.528
  23. Mickelson JK, Ali MN, Kleiman NS, et al. Chimeric 7E3 Fab (ReoPro) decreases detectable CD11b on neutrophils from patients undergoing coronary angioplasty. J Am Coll Cardiol 1999;33:97-106. https://doi.org/10.1016/S0735-1097(98)00532-4
  24. Lefkovits J, Topol EJ. Platelet glycoprotein IIb/IIIa receptor antagonists in coronary artery disease. Eur Heart J 1996;17:9-18.
  25. Pratt RE, Dzau VJ. Pharmacological strategies to prevent restenosis: lessons learned from blockade of the renin-angiotensin system. Circulation 1996;93:848-52. https://doi.org/10.1161/01.CIR.93.5.848
  26. Nakamura M, Funakoshi T, Arakawa N, Yoshida H, Makita S, Hiramori K. Effect of angiotensin-converting enzyme inhibitors on endothelium- dependent peripheral vasodilation in patients with chronic heart failure. J Am Coll Cardiol 1994;24:1321-7. https://doi.org/10.1016/0735-1097(94)90115-5
  27. Hirooka Y, Imaizumi T, Masaki H, et al. Captopril improves impaired endothelium-dependent vasodilation in hypertensive patients. Hypertension 1992;20:175-80. https://doi.org/10.1161/01.HYP.20.2.175
  28. Mancini GB, Henry GC, Macaya C, et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study. Circulation 1996;94:258-65. https://doi.org/10.1161/01.CIR.94.3.258
  29. Packer L, Roy S, Sen CK. Alpha-lipoic acid: a metabolic antioxidant and potential redox modulator of transcription. Adv Pharmacol 1997;38:79-101.
  30. Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care 1999;22:1296-301. https://doi.org/10.2337/diacare.22.8.1296
  31. Sung MJ, Kim W, Ahn SY, et al. Protective effect of alpha-lipoic acid in lipopolysaccharide-induced endothelial fractalkine expression. Circ Res 2005;97:880-90. https://doi.org/10.1161/01.RES.0000186522.89544.4D
  32. Lee KM, Park KG, Kim YD, et al. Alpha-lipoic acid inhibits fractalkine expression and prevents neointimal hyperplasia after balloon injury in rat carotid artery. Atherosclerosis 2006;189:106-14. https://doi.org/10.1016/j.atherosclerosis.2005.12.003
  33. Ohlstein EH, Douglas SA, Sung CP, et al. Carvedilol, a cardiovascular drug, prevents vascular smooth muscle cell proliferation, migration, and neointimal formation following vascular injury. Proc Natl Acad Sci U S A 1993;90:6189-93. https://doi.org/10.1073/pnas.90.13.6189
  34. Sung CP, Arleth AJ, Ohlstein EH. Carvedilol inhibits vascular smooth muscle cell proliferation. J Cardiovasc Pharmacol 1993;21:221-7. https://doi.org/10.1097/00005344-199302000-00006
  35. Sung CP, Arleth AJ, Eichman C, Truneh A, Ohlstein EH. Carvedilol, a multiple-action neurohumoral antagonist, inhibits mitogen-activated protein kinase and cell cycle progression in vascular smooth muscle cells. J Pharmacol Exp Ther 1997;283:910-7.
  36. Fattori R, Piva T. Drug-eluting stents in vascular intervention. Lancet 2003;361:247-9. https://doi.org/10.1016/S0140-6736(03)12275-1
  37. Pfuetze KD, Dujovne CA. Probucol. Curr Atheroscler Rep 2000;2:47-57. https://doi.org/10.1007/s11883-000-0094-0
  38. Tardif JC, Cote G, Lesperance J, et al. Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. Multivitamins and Probucol Study Group. N Engl J Med 1997;337:365-72. https://doi.org/10.1056/NEJM199708073370601
  39. Watanabe K, Sekiya M, Ikeda S, Miyagawa M, Hashida K. Preventive effects of probucol on restenosis after percutaneous transluminal coronary angioplasty. Am Heart J 1996;132(1 Pt 1):23-9. https://doi.org/10.1016/S0002-8703(96)90386-5
  40. Cote G, Tardif JC, Lesperance J, et al. Effects of probucol on vascular remodeling after coronary angioplasty. Multivitamins and Protocol Study Group. Circulation 1999;99:30-5. https://doi.org/10.1161/01.CIR.99.1.30
  41. Schneider JE, Berk BC, Gravanis MB, et al. Probucol decreases neointimal formation in a swine model of coronary artery balloon injury. A possible role for antioxidants in restenosis. Circulation 1993;88:628-37. https://doi.org/10.1161/01.CIR.88.2.628
  42. Wasserman MA, Sundell CL, Kunsch C, Edwards D, Meng CQ, Medford RM. Chemistry and pharmacology of vascular protectants: a novel approach to the treatment of atherosclerosis and coronary artery disease. Am J Cardiol 2003;91:34A-40A. https://doi.org/10.1016/S0002-9149(02)03148-X
  43. Tardif JC, Grégoire J, Schwartz L, et al. Effects of AGI-1067 and probucol after percutaneous coronary interventions. Circulation 2003;107: 552-8. https://doi.org/10.1161/01.CIR.0000047525.58618.3C
  44. Wakeyama T, Ogawa H, Iida H, et al. Effects of candesartan and probucol on restenosis after coronary stenting: results of insight of stent intimal hyperplasia inhibition by new angiotensin II receptor antagonist (ISHIN) trial. Circ J 2003;67:519-24. https://doi.org/10.1253/circj.67.519
  45. Logeart D, Prigent-Richard S, Jozefonvicz J, Letourneur D. Fucans, sulfated polysaccharides extracted from brown seaweeds, inhibit vascular smooth muscle cell proliferation. I. Comparison with heparin for antiproliferative activity, binding and internalization. Eur J Cell Biol 1997;74:376-84.
  46. Kim JM, Cho EJ, et al. Effect of fucoidan for smooth muscle cell proliferation and neointima hyperplasia in a rabbit iliac artery in-stent restenosis model. Korean Circ J 2011;41:II-245. Abstract.
  47. Liu Q, Ding J, Mante FK, Wunder SL, Baran GR. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials 2002;23:3103-11. https://doi.org/10.1016/S0142-9612(02)00050-9
  48. Fu J, Ji J, Yuan W, Shen J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 2005;26:6684-92. https://doi.org/10.1016/j.biomaterials.2005.04.034
  49. Meng S, Liu Z, Shen L, et al. The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system. Biomaterials 2009;30:2276-83. https://doi.org/10.1016/j.biomaterials.2008.12.075
  50. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007;318:426-30. https://doi.org/10.1126/science.1147241
  51. Rich DH, Singh J. The Carbodiimide Method. In: Meienhofer, editor. The peptides. Acadenic Press;1979. p.241-61.
  52. Bae IH, Park IK, Park DS, Lee H, Jeong MH. Thromboresistant and endothelialization effects of dopamine-mediated heparin coating on a stent material surface. J Mater Sci Mater Med 2012;23:1259-69. https://doi.org/10.1007/s10856-012-4587-5
  53. Song SJ, Park YJ, Park J, et al. Preparation of a drug-eluting stent using a TiO2 film deposited by plasma enhanced chemical vapour deposition as a drug-combining matrix. J Mater Chem 2010;20:4792-801. https://doi.org/10.1039/b925409a
  54. Windecker S, Mayer I, De Pasquale G, et al. Stent coating with titanium- nitride-oxide for reduction of neointimal hyperplasia. Circulation 2001;104:928-33. https://doi.org/10.1161/hc3401.093146
  55. Tsyganov I, Maitz MF, Wieser E, Richter E, Reuther H. Correlation between blood compatibility and physical surface properties of titanium-based coatings. Surf Coat Technol 2005;200:1041-4. https://doi.org/10.1016/j.surfcoat.2005.02.093
  56. Puskas JE, Muñoz-Robledo LG, Hoerr RA, et al. Drug-eluting stent coatings. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009;1:451-62. https://doi.org/10.1002/wnan.38
  57. Song SJ, Jung KW, Park YJ, et al. Nitrogen-doped TiO2 films as drugbinding matrices for the preparation of drug-eluting stents. J Mater Chem 2011;21:8169-77. https://doi.org/10.1039/c0jm03994b
  58. Packer L, Witt EH, Tritschler HJ. Alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med 1995;19:227-50. https://doi.org/10.1016/0891-5849(95)00017-R
  59. Sim DS, Kwon JS, Kim YS, et al. Experience with Endothelial Progenitor Cell Capturing Aptamers for Coating of Intracoronary Stents in a Porcine Model. TERM 2009;6:555-61.
  60. Stettler C, Wandel S, Allemann S, et al. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 2007;370:937-48. https://doi.org/10.1016/S0140-6736(07)61444-5
  61. Stone GW, Moses JW, Ellis SG, et al. Safety and efficacy of sirolimusand paclitaxel-eluting coronary stents. N Engl J Med 2007;356:998-1008. https://doi.org/10.1056/NEJMoa067193
  62. Raber L, Magro M, Stefanini GG, et al. Very late coronary stent thrombosis of a newer-generation everolimus-eluting stent compared with early-generation drug-eluting stents: a prospective cohort study. Circulation 2012;125:1110-21. https://doi.org/10.1161/CIRCULATIONAHA.111.058560
  63. Kedhi E, Joesoef KS, McFadden E, et al. Second-generation everolimuseluting and paclitaxel-eluting stents in real-life practice (COMPARE): a randomised trial. Lancet 2010;375:201-9. https://doi.org/10.1016/S0140-6736(09)62127-9
  64. Stone GW, Rizvi A, Newman W, et al. Everolimus-eluting versus paclitaxel- eluting stents in coronary artery disease. N Engl J Med 2010;362:1663-74. https://doi.org/10.1056/NEJMoa0910496
  65. Jensen LO, Thayssen P, Hansen HS, et al. Randomized comparison of everolimus-eluting and sirolimus-eluting stents in patients treated with percutaneous coronary intervention: the Scandinavian Organization for Randomized Trials with Clinical Outcome IV (SORT OUT IV). Circulation 2012;125:1246-55. https://doi.org/10.1161/CIRCULATIONAHA.111.063644
  66. Kimura T, Morimoto T, Natsuaki M, et al. Comparison of everolimuseluting and sirolimus-eluting coronary stents: 1-year outcomes from the Randomized Evaluation of Sirolimus-eluting Versus Everolimuseluting stent Trial (RESET). Circulation 2012;126:1225-36. https://doi.org/10.1161/CIRCULATIONAHA.112.104059
  67. Leon MB, Nikolsky E, Cutlip DE, et al. Improved late clinical safety with zotarolimus-eluting stents compared with paclitaxel-eluting stents in patients with de novo coronary lesions: 3-year follow-up from the ENDEAVOR IV (Randomized Comparison of Zotarolimus- and Paclitaxel-Eluting Stents in Patients With Coronary Artery Disease) trial. JACC Cardiovasc Interv 2010;3:1043-50. https://doi.org/10.1016/j.jcin.2010.07.008
  68. Park DW, Kim YH, Yun SC, et al. Comparison of zotarolimus-eluting stents with sirolimus- and paclitaxel-eluting stents for coronary revascularization: the ZEST (comparison of the efficacy and safety of zotarolimus-eluting stent with sirolimus-eluting and paclitaxel-eluting stent for coronary lesions) randomized trial. J Am Coll Cardiol 2010;56:1187-95. https://doi.org/10.1016/j.jacc.2010.03.086
  69. Bangalore S, Kumar S, Fusaro M, et al. Short- and long-term outcomes with drug-eluting and bare-metal coronary stents: a mixed-treatment comparison analysis of 117 762 patient-years of follow-up from randomized trials. Circulation 2012;125:2873-91. https://doi.org/10.1161/CIRCULATIONAHA.112.097014
  70. Camenzind E, Wijns W, Mauri L, et al. Stent thrombosis and major clinical events at 3 years after zotarolimus-eluting or sirolimus-eluting coronary stent implantation: a randomised, multicentre, open-label, controlled trial. Lancet 2012;380:1396-405. https://doi.org/10.1016/S0140-6736(12)61336-1
  71. Lim SY, Bae EH, Jeong MH, et al. Effect of alpha lipoic acid in a porcine in-stent restenosis model. J Cardiol 2009;54:375-85. https://doi.org/10.1016/j.jjcc.2009.06.005
  72. Kim W, Jeong MH, Hong YJ, et al. The long-term clinical results of a platelet glycoprotein IIb/IIIa receptor blocker (Abciximab: Reopro) coated stent in patients with coronary artery disease. Korean J Intern Med 2004;19:220-9. https://doi.org/10.3904/kjim.2004.19.4.220
  73. Kim W, Jeong MH, Kim KH, et al. The clinical results of a platelet glycoprotein IIb/IIIa receptor blocker (abciximab: ReoPro)-coated stent in acute myocardial infarction. J Am Coll Cardiol 2006;47:933-8. https://doi.org/10.1016/j.jacc.2005.10.054
  74. Hong YJ, Jeong MH, Hwang SH, et al. Impact of postprocedure minimum stent area on long-term results following abciximab-coated stent implantation: an intravascular ultrasound analysis. Int J Cardiol 2007;123:23-8. https://doi.org/10.1016/j.ijcard.2006.11.101
  75. Hong YJ, Jeong MH, Lee SR, et al. Anti-inflammatory effect of abciximab- coated stent in a porcine coronary restenosis model. J Korean Med Sci 2007;22:802-9. https://doi.org/10.3346/jkms.2007.22.5.802
  76. Kim SS, Hong YJ, Jeong MH, et al. Two-year clinical outcome after abciximab- coated stent implantation in patients with coronary artery disease. Circ J 2010;74:442-8. https://doi.org/10.1253/circj.CJ-09-0674
  77. Hong YJ, Jeong MH, Song SJ, et al. Effects of ramiprilat-coated stents on neointimal hyperplasia, inflammation, and arterial healing in a porcine coronary restenosis model. Korean Circ J 2011;41:535-41. https://doi.org/10.4070/kcj.2011.41.9.535
  78. Kim JM, Kim JH, Jeong MH, et al. Fabrication and evaluation of a fucoidan- coated stent in a porcine coronary restenosis model. Korean Circ J 2012;42:II-120. Abstract.
  79. Lim KS, Hong YJ, Hachinohe D, et al. Effect of a dual drug-coated stent with abciximab and alpha-lipoic Acid in a porcine coronary restenosis model. Korean Circ J 2011;41:241-7. https://doi.org/10.4070/kcj.2011.41.5.241
  80. Raber L, Kelbaek H, Ostojic M, et al. Effect of biolimus-eluting stents with biodegradable polymer vs bare-metal stents on cardiovascular events among patients with acute myocardial infarction: the COMFORTABLE AMI randomized trial. JAMA 2012;308:777-87. https://doi.org/10.1001/jama.2012.10065
  81. Smits PC, Hofma S, Togni M, et al. Abluminal biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent (COMPARE II): a randomised, controlled, non-inferiority trial. Lancet 2013;381:651-60. https://doi.org/10.1016/S0140-6736(12)61852-2
  82. Stefanini GG, Kalesan B, Serruys PW, et al. Long-term clinical outcomes of biodegradable polymer biolimus-eluting stents versus durable polymer sirolimus-eluting stents in patients with coronary artery disease (LEADERS): 4 year follow-up of a randomised non-inferiority trial. Lancet 2011;378:1940-8. https://doi.org/10.1016/S0140-6736(11)61672-3
  83. Stefanini GG, Byrne RA, Serruys PW, et al. Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: a pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials. Eur Heart J 2012;33:1214-22. https://doi.org/10.1093/eurheartj/ehs086
  84. Che HL, Bae IH, Lim KS, et al. Suppression of post-angioplasty restenosis with an Akt1 siRNA-embedded coronary stent in a rabbit model. Biomaterials 2012;33:8548-56. https://doi.org/10.1016/j.biomaterials.2012.07.045
  85. Jiang HL, Hong SH, Kim YK, et al. Aerosol delivery of spermine-based poly(amino ester)/Akt1 shRNA complexes for lung cancer gene therapy. Int J Pharm 2011;420:256-65. https://doi.org/10.1016/j.ijpharm.2011.08.045
  86. Jere D, Arote R, Jiang HL, Kim YK, Cho MH, Cho CS. Biodegradable nano- polymeric system for efficient Akt1 siRNA delivery. J Nanosci Nanotechnol 2010;10:3366-9. https://doi.org/10.1166/jnn.2010.2228
  87. Jiang HL, Xu CX, Kim YK, et al. The suppression of lung tumorigenesis by aerosol-delivered folate-chitosan-graft-polyethylenimine/Akt1 shRNA complexes through the Akt signaling pathway. Biomaterials 2009;30:5844-52. https://doi.org/10.1016/j.biomaterials.2009.07.017
  88. Duguay D, deBlois D. Differential regulation of Akt, caspases and MAP kinases underlies smooth muscle cell apoptosis during aortic remodelling in SHR treated with amlodipine. Br J Pharmacol 2007;151:1315-23.
  89. Jere D, Jiang HL, Kim YK, et al. Chitosan-graft-polyethylenimine for Akt1 siRNA delivery to lung cancer cells. Int J Pharm 2009;378:194-200. https://doi.org/10.1016/j.ijpharm.2009.05.046
  90. Kwon JC, Song SJ, Yang EJ, et al. Novel abciximab-Kruppel-like factor 4-plasmid dual-delivery titanium dioxide-coated coronary stent. Int J Cardiol 2013.

Cited by

  1. The metamorphosis of vascular stents: passive structures to smart devices vol.6, pp.4, 2013, https://doi.org/10.1039/c5ra19109b
  2. Effect of a Non-polymer Titanium Dioxide Thin Film-Coated Stent with Heparin in a Porcine Coronary Restenosis Model vol.3, pp.2, 2013, https://doi.org/10.14345/ceth.17005
  3. Preclinical Evaluation of a Novel Polymer-free Everolimus-eluting Stent in a Mid-term Porcine Coronary Restenosis Model vol.36, pp.40, 2021, https://doi.org/10.3346/jkms.2021.36.e259