DOI QR코드

DOI QR Code

Counteracting the enzymatic activity of dipeptidylpeptidase 4 for potential therapeutic advantage, with an emphasis on cord blood transplantation

  • Broxmeyer, Hal E. (Department of Microbiology and Immunology, Indiana University School of Medicine)
  • Received : 2013.07.12
  • Accepted : 2013.09.10
  • Published : 2013.11.01

Abstract

Dipeptidylpeptidase (DPP) 4, also known as CD26, is an enzyme present on the surface of a number of different cell types. It is also found within cells and as a soluble protein in body fluids. It can specifically truncate proteins at the penultimate N-terminus residue for some amino acids, such as alanine, proline, serine, and perhaps others. DPP4 has been implicated in regulating the in vitro and in vivo functional activities of a number of hematopoietically active molecules, and this information, along with that on inhibition of DPP4, has been studied in efforts to enhance hematopoietic cell transplantation (HCT), hematopoiesis after stress in mouse models, and in the clinical setting of single-unit cord blood (CB) HCT. This article reviews the current status of this compound's effects on regulatory proteins, the field of CB HCT, a potential role for modulating DPP4 activity in enhancing single-unit CB HCT in adults, and future aspects in context of other cellular therapies and the area of regenerative medicine.

Keywords

References

  1. Broxmeyer HE, Farag SS, Rocha V. Cord blood hematopoietic cell transplantation. In: Appelbaum FR, Forman SJ, Negrin RS, Antin JH, eds. Thomas' Hematopoietic Cell Transplantation. 5th ed. Oxford: Wiley-Blackwell, 2013.
  2. Shaheen M, Broxmeyer HE. The humoral regulation of hematopoiesis. In: Hoffman R, Benz EJ Jr, Shattil SJ, et al., eds. Hematology: Basic Principles and Practice. 5th ed. Philadelphia: Elsevier Churchill Livingston, 1998:253-275.
  3. Shaheen M, Broxmeyer HE. Hematopoietic cytokines and growth factors. In: Broxmeyer HE; American Association of Blood Banks, eds. Cord Blood Biology, Transplantation, Banking, and Regulation. Bethesda: AABB Press, 2011:35-74.
  4. Broxmeyer HE. Will iPS cells enhance therapeutic applicability of cord blood cells and banking? Cell Stem Cell 2010;6:21-24. https://doi.org/10.1016/j.stem.2009.12.008
  5. Shaheen M, Broxmeyer HE. Principles of cytokine signaling. In: Hoffman R, Benz EJ Jr, Silberstein LE, Heslop H, Weitz J, Anastasi J, eds. Hematology: Basic Principles and Practice. 6th ed. Philadelphia: Elsevier Saunders, 2013:136-146.
  6. Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood 2013;122:491-498. https://doi.org/10.1182/blood-2013-02-453175
  7. Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989;321:1174-1178. https://doi.org/10.1056/NEJM198910263211707
  8. Wagner JE, Kernan NA, Steinbuch M, Broxmeyer HE, Gluckman E. Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and nonmalignant disease. Lancet 1995;346:214-219. https://doi.org/10.1016/S0140-6736(95)91268-1
  9. Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A 1989;86:3828-3832. https://doi.org/10.1073/pnas.86.10.3828
  10. Broxmeyer HE, Kurtzberg J, Gluckman E, et al. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells 1991;17:313-329.
  11. Carow CE, Hangoc G, Cooper SH, Williams DE, Broxmeyer HE. Mast cell growth factor (c-kit ligand) supports the growth of human multipotential progenitor cells with a high replating potential. Blood 1991;78:2216-2221.
  12. Broxmeyer HE, Hangoc G, Cooper S, et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci U S A 1992;89:4109-4113. https://doi.org/10.1073/pnas.89.9.4109
  13. Carow CE, Hangoc G, Broxmeyer HE. Human multipotential progenitor cells (CFU-GEMM) have extensive replating capacity for secondary CFU-GEMM: an effect enhanced by cord blood plasma. Blood 1993;81:942-949.
  14. Lu L, Xiao M, Shen RN, Grigsby S, Broxmeyer HE. Enrichment, characterization, and responsiveness of single primitive CD34 human umbilical cord blood hematopoietic progenitors with high proliferative and replating potential. Blood 1993;81:41-48.
  15. Vormoor J, Lapidot T, Pf lumio F, et al. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood 1994;83:2489-2497.
  16. Bock TA, Orlic D, Dunbar CE, Broxmeyer HE, Bodine DM. Improved engraftment of human hematopoietic cells in severe combined immunodef icient (SCID) mice carrying human cytokine transgenes. J Exp Med 1995;182:2037-2043. https://doi.org/10.1084/jem.182.6.2037
  17. Broxmeyer HE, Cooper S. High-efficiency recovery of immature haematopoietic progenitor cells with extensive proliferative capacity from human cord blood cryopreserved for 10 years. Clin Exp Immunol 1997;107 Suppl 1:45-53.
  18. Broxmeyer HE, Srour EF, Hangoc G, Cooper S, Anderson SA, Bodine DM. High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc Natl Acad Sci U S A 2003;100:645-650. https://doi.org/10.1073/pnas.0237086100
  19. Broxmeyer HE, Lee MR, Hangoc G, et al. Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood 2011;117:4773-4777. https://doi.org/10.1182/blood-2011-01-330514
  20. Rocha V, Broxmeyer HE. New approaches for improving engraftment after cord blood transplantation. Biol Blood Marrow Transplant 2010;16(1 Suppl):S126-S132. https://doi.org/10.1016/j.bbmt.2009.11.001
  21. Hopsu-Havu VK, Glenner GG. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 1966;7:197-201. https://doi.org/10.1007/BF00577838
  22. Martin RA, Cleary DL, Guido DM, Zurcher-Neely HA, Kubiak TM. Dipeptidyl peptidase IV (DPP-IV) from pig kidney cleaves analogs of bovine growth hormonereleasing factor (bGRF) modified at position 2 with Ser, Thr or Val: extended DPP-IV substrate specificity? Biochim Biophys Acta 1993;1164:252-260. https://doi.org/10.1016/0167-4838(93)90256-Q
  23. Campbell TB, Broxmeyer HE. CD26 inhibition and hematopoiesis: a novel approach to enhance transplantation. Front Biosci 2008;13:1795-1805. https://doi.org/10.2741/2800
  24. Broxmeyer HE, Hoggatt J, O'Leary HA, et al. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med 2012;18:1786-1796. https://doi.org/10.1038/nm.2991
  25. Solau-Gervais E, Zerimech F, Lemaire R, Fontaine C, Huet G, Flipo RM. Cysteine and serine proteases of synovial tissue in rheumatoid arthritis and osteoarthritis. Scand J Rheumatol 2007;36:373-377. https://doi.org/10.1080/03009740701340172
  26. Lambeir AM, Diaz Pereira JF, Chacon P, et al. A prediction of DPP IV/CD26 domain structure from a physicochemical investigation of dipeptidyl peptidase IV (CD26) from human seminal plasma. Biochim Biophys Acta 1997;1340:215-226. https://doi.org/10.1016/S0167-4838(97)00045-9
  27. Christopherson KW 2nd, Hangoc G, Broxmeyer HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alphamediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 2002;169:7000-7008.
  28. Christopherson KW 2nd, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004;305:1000-1003. https://doi.org/10.1126/science.1097071
  29. Christopherson KW, Cooper S, Hangoc G, Broxmeyer HE. CD26 is essential for normal G-CSF-induced progenitor cell mobilization as determined by CD26-/-mice. Exp Hematol 2003;31:1126-1134. https://doi.org/10.1016/j.exphem.2003.07.002
  30. Christopherson KW 2nd, Cooper S, Broxmeyer HE. Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood 2003;101:4680-4686. https://doi.org/10.1182/blood-2002-12-3893
  31. Tian C, Bagley J, Forman D, Iacomini J. Inhibition of CD26 peptidase activity significantly improves engraftment of retrovirally transduced hematopoietic progenitors. Gene Ther 2006;13:652-658. https://doi.org/10.1038/sj.gt.3302695
  32. Peranteau WH, Endo M, Adibe OO, Merchant A, Zoltick PW, Flake AW. CD26 inhibition enhances allogeneic donor-cell homing and engraftment after in utero hematopoietic-cell transplantation. Blood 2006;108:4268-4274. https://doi.org/10.1182/blood-2006-04-018986
  33. Wyss BK, Donnelly AF, Zhou D, Sinn AL, Pollok KE, Goebel WS. Enhanced homing and engraftment of fresh but not ex vivo cultured murine marrow cells in submyeloablated hosts following CD26 inhibition by Diprotin A. Exp Hematol 2009;37:814-823. https://doi.org/10.1016/j.exphem.2009.03.005
  34. Campbell TB, Hangoc G, Liu Y, Pollok K, Broxmeyer HE. Inhibition of CD26 in human cord blood CD34+ cells enhances their engraftment of nonobese diabetic/severe combined immunodeficiency mice. Stem Cells Dev 2007;16:347-354. https://doi.org/10.1089/scd.2007.9995
  35. Christopherson KW 2nd, Paganessi LA, Napier S, Porecha NK. CD26 inhibition on CD34+ or lineage- human umbilical cord blood donor hematopoietic stem cells/hematopoietic progenitor cells improves long-term engraftment into NOD/SCID/Beta2null immunodeficient mice. Stem Cells Dev 2007;16:355-360. https://doi.org/10.1089/scd.2007.9996
  36. Kawai T, Choi U, Liu PC, Whiting-Theobald NL, Linton GF, Malech HL. Diprotin A infusion into nonobese diabetic/severe combined immunodeficiency mice markedly enhances engraftment of human mobilized CD34+ peripheral blood cells. Stem Cells Dev 2007;16:361-370. https://doi.org/10.1089/scd.2007.9997
  37. Farag SS, Srivastava S, Messina-Graham S, et al. In vivo DPP-4 inhibition to enhance engraftment of singleunit cord blood transplants in adults with hematological malignancies. Stem Cells Dev 2013;22:1007-1015. https://doi.org/10.1089/scd.2012.0636
  38. Bergman AJ, Stevens C, Zhou Y, et al. Pharmacokinetic and pharmacodynamic properties of multiple oral doses of sitagliptin, a dipeptidyl peptidase-IV inhibitor: a double-blind, randomized, placebo-controlled study in healthy male volunteers. Clin Ther 2006;28:55-72. https://doi.org/10.1016/j.clinthera.2006.01.015
  39. Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 1998;339:1565-1577. https://doi.org/10.1056/NEJM199811263392201
  40. Ou X, O'Leary HA, Broxmeyer HE. Implications of DPP4 modification of proteins that regulate stem/progenitor and more mature cell types. Blood 2013;122:161-169. https://doi.org/10.1182/blood-2013-02-487470
  41. O'Leary H, Ou X, Broxmeyer HE. The role of dipeptidyl peptidase 4 in hematopoiesis and transplantation. Curr Opin Hematol 2013;20:314-319. https://doi.org/10.1097/MOH.0b013e32836125ac
  42. Chua S, Sheu JJ, Chen YL, et al. Sitagliptin therapy enhances the number of circulating angiogenic cells and angiogenesis-evaluations in vitro and in the rat critical limb ischemia model. Cytotherapy 2013;15:1148-1163. https://doi.org/10.1016/j.jcyt.2013.05.005

Cited by

  1. The perceptions of natural compounds against dipeptidyl peptidase 4 in diabetes: fromin silicotoin vivo vol.10, pp.None, 2013, https://doi.org/10.1177/2040622319875305