DOI QR코드

DOI QR Code

Preparation of Metal Injection Molded Dental Components using Spheroidized Ti Powders by Plasma Process

플라즈마 공정으로 구상화된 티타늄 분말과 금속사출성형 공정을 이용한 치과용 부품 제조

  • Gwak, Ji-Na (Powder Technology Department, Korea institute of Materials Science(KIMS)) ;
  • Yang, Sangsun (Powder Technology Department, Korea institute of Materials Science(KIMS)) ;
  • Yun, Jung-Yeul (Powder Technology Department, Korea institute of Materials Science(KIMS)) ;
  • Kim, Ju-Yong (R&D Center, KINORI Corporation) ;
  • Park, Seongjin (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology Pohang) ;
  • Kim, Hyun-Seung (R&D Center, Megagen Implant Co., Ltd.) ;
  • Kim, Yong-Jin (Powder Technology Department, Korea institute of Materials Science(KIMS)) ;
  • Park, Yong-Ho (Department of Materials Science and Engineering, Pusan National University)
  • 곽지나 (한국기계연구원 부설 재료연구소 분말기술연구그룹) ;
  • 양상선 (한국기계연구원 부설 재료연구소 분말기술연구그룹) ;
  • 윤중열 (한국기계연구원 부설 재료연구소 분말기술연구그룹) ;
  • 김주용 ((주)기노리 기술연구소) ;
  • 박성진 (포항공대 기계공학과) ;
  • 김현승 ((주)메가젠임플란트) ;
  • 김용진 (한국기계연구원 부설 재료연구소 분말기술연구그룹) ;
  • 박용호 (부산대학교 재료공학과)
  • Received : 2013.11.20
  • Accepted : 2013.12.13
  • Published : 2013.12.28

Abstract

This research presents a preparation method of dental components by metal injection molding process (MIM process) using titanium scrap. About $20{\mu}m$ sized spherical titanium powders for MIM process were successfully prepared by a novel dehydrogenation and spheroidization method using in-situ radio frequency thermal plasma treatment. The effects of MIM process parameters on the mechanical and biological properties of dental components were investigated and the optimum condition was obtained. After sintering at $1250^{\circ}C$ for 1 hour in vacuum, the hardness and the tensile strength of MIMed titanium components were 289 Hv and 584 MPa, respectively. Prepared titanium dental components were not cytotoxic and they showed a good cell proliferation property.

Keywords

References

  1. W. B. Kim, G. S. Choi, C. Y Suh, D. S. Kil and Ho Ha: K. J. Mater. Research, 9 (1999) 3 (Korean).
  2. D. K Ahn, B. Y. Hur, S. Y. Kim, S. H. Park, H. J. Ahn and S. J. Park: J. Kor. Inst. Met. Mater., 40 (2002) 915 (Korean).
  3. O. M. Ferri, T. Ebel and R. Bormann: Mater. Sci. and Eng. A, 527 (2010) 1800. https://doi.org/10.1016/j.msea.2009.11.007
  4. A. El-Morsy: Mat. Des., 30 (2009) 1825. https://doi.org/10.1016/j.matdes.2008.07.029
  5. M. Razavi, M. R. Rahimpour and A. H. rajabi-Zamani: J. Alloys Compd., 436 (2007) 142. https://doi.org/10.1016/j.jallcom.2006.07.018
  6. M Samoshina, A. Aksenov and E. Kaevitser: Rev. Adv. Mater. Sci., 18 (2008) 305.
  7. J. M. Contreras, A. Jimenez-Morales and J. M. Torralba: J. Mater. Process. Tech., 209 (2009) 5618. https://doi.org/10.1016/j.jmatprotec.2009.05.021
  8. M. N. Ahsan, A. J. Pinkerton, R. J. Moat and J. Shackleton: Mater. Sci. Eng. A, 528 (2011) 7648. https://doi.org/10.1016/j.msea.2011.06.074
  9. T. G. Luo, X. H. Qu, M. L. Qin and M. L. Ouyang: Int. J. Refract. Met. Hard Mater., 27 (2009) 615. https://doi.org/10.1016/j.ijrmhm.2008.10.003
  10. H. Ye, X. Y. Liu and H. Hong: J. Mater. Process. Tech., 200 (2008) 12. https://doi.org/10.1016/j.jmatprotec.2007.10.066
  11. B. Utela, D. Stori and R. Anderson: J. Manuf. Process., 10 (2008) 96. https://doi.org/10.1016/j.jmapro.2009.03.002
  12. C. W. Yang and M. Busse: Adv. Eng. Mater., 6 (2004) 391. https://doi.org/10.1002/adem.200405146
  13. D. Harbec, F. Gitzhofer and A. Tagnit-Hamou: Powder Technol., 214 (2011) 356. https://doi.org/10.1016/j.powtec.2011.08.031
  14. Z. Karoly and J. Szepvolgi: Chem. Eng. Process., 44 (2005) 221. https://doi.org/10.1016/j.cep.2004.02.015
  15. C. Tendero, C. Tixier, P. Tristant, J. Desmaison and P. Leprince: Spectrochim. Acta B, 61 (2006) 2. https://doi.org/10.1016/j.sab.2005.10.003
  16. F. H. Froes and D. Eylon: Int. Met. Rev., 35 (1990) 167.
  17. J. H. Moll, C. F. Yolton and B. J. McTiernan: int. J. Powder Metall., 26 (1990) 149.
  18. B. Y. Tay, N. H. Loh, S. B. Tor, F. L. Ng, G. Fu and X. H. Lu: Powder Tech., 188 (2009) 179. https://doi.org/10.1016/j.powtec.2008.04.047
  19. R. M. German and A. Bose: MPIF, Princeton, NJ (1997).
  20. W. K. You, J. P. Choi, S. M. Yoon and J. S. Lee: Powder Tech., 228 (2012) 199. https://doi.org/10.1016/j.powtec.2012.05.016
  21. Z. Y. Liu, N. H. Loh, S. B. Tor, K. A. Khor, Y. Murakoshi and R. Maeda: Mater. Letters, 48 (2001) 31. https://doi.org/10.1016/S0167-577X(00)00276-7
  22. S. S. Y, J. N. Gwak, T. S. Lim, Y. J. Kim and J. Y. Yun: Mater. Trans. J. Inst. Metals & Mater, 54 (2013) 2313.

Cited by

  1. Characterization Of The Graded Microstructure In Powder Sintered Porous Titanium vol.60, pp.2, 2015, https://doi.org/10.1515/amm-2015-0111
  2. Effect of Heat Treatment Temperature and Atmosphere on the Microstructure of TiH2-WO3 Powder Mixtures vol.24, pp.1, 2017, https://doi.org/10.4150/KPMI.2017.24.1.41