DOI QR코드

DOI QR Code

The Effect of Binder Content for the Pore Properties of Fe Foam Fabricated by Slurry Coating Process

슬러리 코팅 공정으로 제조된 Fe 폼의 기공 특성에 미치는 바인더 함량의 영향

  • Choi, Jin Ho (Powder Technology Department, Korea Institute of Materials Science (KIMS)) ;
  • Yang, Sangsun (Powder Technology Department, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Yang-Do (Department of Metallurgical Engineering, Pusan National University) ;
  • Yun, Jung-Yeul (Powder Technology Department, Korea Institute of Materials Science (KIMS))
  • 최진호 (한국기계연구원 부설 재료연구소 분말기술연구실) ;
  • 양상선 (한국기계연구원 부설 재료연구소 분말기술연구실) ;
  • 김양도 (부산대학교 재료공학과) ;
  • 윤중열 (한국기계연구원 부설 재료연구소 분말기술연구실)
  • Received : 2013.11.18
  • Accepted : 2013.12.12
  • Published : 2013.12.28

Abstract

Fe foam with above 90% porosity and 2 millimeter pore size was successfully fabricated by a slurry coating process. In this study, the binder contents were controlled to produce the Fe foam with different pore size, strut thickness and porosity. Firstly, the slurry was prepared by uniform mixing with Fe powders, distilled water and polyvinyl alcohol(PVA) as initial materials. After slurry coating on the polyurethane(PU) foam the sample was dried at $80^{\circ}C$. The PVA and PU foams were then removed by heating at $700^{\circ}C$ for 3 hours. The debinded samples were subsequently sintered at $1250^{\circ}C$ with holding time of 3 hours under hydrogen atmosphere. The three dimensional geometries of the obtained Fe foams with open cell structure were investigated using X-ray micro CT(computed tomography) as well as the pore morphology, size and phase.

Keywords

References

  1. M. German: Powder Metallurgy of Iron and Steel (Ed), John Wiley and Sons, New york, NY, (1997).
  2. R. F. Conley: Practical Dispersion A guide to Understanding and Formulation Slurries (Ed) Wiley-VCN, New York, NY, (1996).
  3. Y. I. Kim, J. H. Kim, J. K. Lee and D. Kim: Trans. Mater. Process, 7 (2011) 20 (Korea).
  4. K. O. Oh, E. S. Lee, J. S. Bae, M. J. Jang, R. Poss, B. Kieback, G. Walther and B. Kloeden: Met Foam., (2011) Korea.
  5. D. T. Queheillalt, D. D. Hass, D. J. Sypeck and H. N. G. Wadley: J. Mater. Res., 16 (2001) 1028-1036. https://doi.org/10.1557/JMR.2001.0143
  6. Y. Boonyongmaneerat and D. C. Dunand: Adv. Eng. Mater. 10 (2008) 379-383. https://doi.org/10.1002/adem.200700300
  7. O. Smorygo, V. Mikutski, A. Leonov, A. Marukovich and Y. Vialiuha: Scr. Mater., 58 (2008) 910-913. https://doi.org/10.1016/j.scriptamat.2008.01.014
  8. D.T. Queheillalt, Y. Katsumura and H. N. G. Wadley: Scr. Mater., 50 (2004) 313-317. https://doi.org/10.1016/j.scriptamat.2003.10.016
  9. K. A. Khor, L. G. Yu, O. Andersen and G. Stephani: Mater. Sci. Eng. A, 356 (2003) 130-135. https://doi.org/10.1016/S0921-5093(03)00111-4
  10. H. Choe and D. C. Dunand: Mater. Sci. Eng. A, 384 (2004) 184-193. https://doi.org/10.1016/j.msea.2004.06.045
  11. H. Choe and D.C. Dunand: Acta Mater., 52 (2004) 1283-1295. https://doi.org/10.1016/j.actamat.2003.11.012
  12. O. Andersen, U. Waag, L. Schneider, G. Stephani, B. Kieback: Adv. Eng. Mater, (2000); 2: 192. https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<192::AID-ADEM192>3.0.CO;2-#
  13. Sumitomo Electric, Japan. Product data sheet of "Celmet", 1986.
  14. Neumann P. Metal foams and porous metal structures (Ed). In: Banhart J, Ashby MF and Fleck NA. Int. Conf., Bremen, Germany, 14-16 June. Bremen: MIT Press - Verlag, 1999. p. 167.
  15. B. A. A. L. Van Setten, M. Makkee and J. A. Moulijn: Catal. Rev. - Sci. Eng, 43 (2001) 489-564. https://doi.org/10.1081/CR-120001810

Cited by

  1. Powder Mixing Ratios on the Pore Properties of Fe Foam Fabricated by a Slurry Coating Process vol.21, pp.4, 2014, https://doi.org/10.4150/KPMI.2014.21.4.266
  2. Experimental Study On Fracture Property Of Tapered Double Cantilever Beam Specimen With Aluminum Foam vol.60, pp.2, 2015, https://doi.org/10.1515/amm-2015-0153
  3. Experimental Study On Fracture Property Of Double Cantilever Beam Specimen With Aluminum Foam vol.60, pp.2, 2015, https://doi.org/10.1515/amm-2015-0087