DOI QR코드

DOI QR Code

가축분뇨를 이용한 미생물연료전지의 농화배양 단계에서 미생물 군집 변화

Microbial Communities of the Microbial Fuel Cell Using Swine Wastewater in the Enrichment Step with the Lapse of Time

  • 장재경 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 홍선화 (수원대학교 환경에너지공학과) ;
  • 유영선 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 이은영 (수원대학교 환경에너지공학과) ;
  • 장인섭 (광주과학기술원 환경공학과) ;
  • 강연구 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 김종구 (국립농업과학원 농업공학부 에너지환경공학과)
  • Jang, Jae Kyung (Energy and Environmental Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Sun Hwa (Department of Environmental and Energy, The University of Suwon) ;
  • Ryou, Youg Sun (Energy and Environmental Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Eun Young (Department of Environmental and Energy, The University of Suwon) ;
  • Chang, In Seop (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kang, Young Koo (Energy and Environmental Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Jong Goo (Energy and Environmental Division, National Academy of Agricultural Science, Rural Development Administration)
  • 투고 : 2013.11.07
  • 심사 : 2013.12.05
  • 발행 : 2013.12.30

초록

이 연구는 전기화학적 활성을 갖는 미생물들을 알아내기 위하여 농화배양 단계에서 시간에 따라 미생물연료전지의 미생물 군집 변화를 알아본 것이다. 접종원으로 하수처리장 혐기 소화액와 가축분뇨를 1 : 1로 혼합한 액을 사용하였다. 농화배양 과정에서 미생물 생장곡선에 따라 지체기, 대수성장기 그리고 정지기로 전류발생 패턴을 보면서 구분하였다. 전류가 안정적으로 발생되는 시점을 농화배양이 끝난 시점으로 판단하였으며, 이때 전류는 $0.84{\pm}0.06mA$가 발생되었다. 농화배양이 되어 가는 과정에서 미생물군집 변화를 전기영동(DGGE)에서 확인하여 시간에 따라 새롭게 나타나는 band나 농도가 높아지는 band 17개를 잘라내어 염기서열을 분석하였다. 이 결과 지체기와 대수성장 단계에서는 Clostridium, Rhodocyclaceae, Bacteriodete 그리고 Uncultured bacterium 등이 검출되었고, 정지기에서는 Geobacter sp., Rhodocyclaceae, Candidatus, Nitrospira, Flavobactriaceae, 그리고 Uncultured bacterium 등이 검출되었다. Geobactor의 경우는 이미 전기활성 미생물로 알려져 있는 미생물 종으로 이를 포함하여 이 연구에서 검출된 다른 미생물들 중에도 전기활성이 있는 미생물을 포함하고 있을 것으로 판단된다.

These studies were attempted to investigate the change of microbial community of anode of microbial fuel cell using swine wastewater in the enrichment step with the lapse of time. Microbial fuel cells enriched by a 1 : 1 mixture of anaerobic digestive juices of the sewage treatment plant and livestock wastewater. Enrichment culture step was divided into three stages to indentify the microorganisms. It was separated by each lag phase, exponential phase, and stationary phase. These steps were determined by the change of the current value. The current after enrichment was generated about $0.84{\pm}0.06mA$. We were cut out the different 17 bands in the DGGE fingerprint gel to do sequencing. The bands which the concentration was increasing or newly appearing with the lapse of time were included for this study. In the lag and exponential phase, Clostridium, Rhodocyclaceae, Bacteriodetes, and Uncultured bacterium etc. were detected. There were in the stationary phase Geobacter sp., Rhodocyclaceae, Candidatus, Nitrospira, Flavobactriaceae and uncultured bacterium etc. Geobactor among microorganisms detected in this study is known as the Electrochemically active microorganisms. It may include electrochemically active microorganisms to be considered as electrical activity microorganisms.

키워드

참고문헌

  1. Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S. and Kim, H. J., "Operational parameters affecting the performance of a mediator-less microbial fuel cell," Biosens. Bioelectron., 18, 327-324(2003). https://doi.org/10.1016/S0956-5663(02)00110-0
  2. Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S. and Kim, B. H., "Construction and operation of a novel mediator- and membrane-less microbial fuel cell," Proc. Biochem., 39(8), 1007-1012(2004).
  3. Liu, H. and Logan, B. E., "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane," Environ. Sci. Technol., 38(14), 4040-4046(2004). https://doi.org/10.1021/es0499344
  4. Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P. and Rabaey, K., "Microbial fuel cells: methodology and technology," Environ. Sci. Technol., 40(17), 5181-5192(2006). https://doi.org/10.1021/es0605016
  5. Rabaey, K. and Verstraete, W., "Microbial fuel cells; novel biotechnology for energy generation," Trends Biotechnol., 23(6), 291-298(2005). https://doi.org/10.1016/j.tibtech.2005.04.008
  6. Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K. H. and Fredrickson, J. K., "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms," PNAS, 103(30), 11358-11363(2005).
  7. Logan, B. E. and Regan, J. M., Electricity-producing bacterial communities in microbial fuel cells, Trends in Microbiol., 14(12), 512-518(2006). https://doi.org/10.1016/j.tim.2006.10.003
  8. Jang, J. K., Honh, S. H., Lee, M. H., Ryou, Y. S., Chang, I. S., Kim, J. G., Kang, Y. K. and Lee, E. Y., "Microbial carbon substrate utilization in microbial fuel cell using livestock wastewater," J. Kor. Soc. Waste Manage., 29(8), 712-719(2012). https://doi.org/10.9786/kswm.2012.29.8.712
  9. He, Z., Kan, J., Wang, Y., Huang, Y., Mansfeld, F. and Nealson, K. H., "Electricity production coupled to ammonium in a microbial fuel cell," Environ. Sci. Technol. 43(9), 3391-3397(2009). https://doi.org/10.1021/es803492c
  10. Kim, I. S., Chae, K., Choi, M. and Verstraete, W., "Microbial fuel cell: Recent advances, bacterial communities and application beyond electricity generation," Environ. Eng. Res., 13(2), 51-65(2008). https://doi.org/10.4491/eer.2008.13.2.051
  11. Lee, J., Phung, N. T., Chang, I. S., Kim, B. H. and Sung, H. C., "Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses," FEMS Microbial. Lett., 223, 185-191(2003). https://doi.org/10.1016/S0378-1097(03)00356-2
  12. Chae, K., Choi, M., Lee, J., Kim, K. and Kim, I., "Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells," Bioresource Technol., 100(14), 3518-3525(2009). https://doi.org/10.1016/j.biortech.2009.02.065
  13. Zhang, Y., Min, B., Huang, L. and Angelidaki, I., "Electricity generation and microbial community response to substrate changes in microbial fuel cell," Bioresour. Technol., 102(2), 1166-1173(2011). https://doi.org/10.1016/j.biortech.2010.09.044
  14. Giovannoni, S. J., Brischgi, T. B., Moyer, C. L. and Field, K. G., "Genetic diversity in sargasso sea bacterioplankton," Nature(London), 345(6270), 60-63(1990). https://doi.org/10.1038/345060a0
  15. Head, I. M., Saunders, J. R. and Pickup, R. W., "Microbial evolution diversity and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms," Microbiol. Ecol., 35, 1-21(1998). https://doi.org/10.1007/s002489900056
  16. Muyzer, G., Waal, E. C. De, and Uitterlinden, A. G., "Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA," Appl. Environ. Microbiol., 59(3), 695-700(1993).
  17. Jang, J. K., Chang, I. S., Hwang, H. Y. Choo, Y. F. Lee, J. Cho, K. S., Kim, B. H., and Nealson, K. H., "Electricity generation coupled to oxidation of propionate in a microbial fuel cell," Biotechnol. Lett., 32(1), 79-85(2010). https://doi.org/10.1007/s10529-009-0118-y
  18. Hong, S. H., Kim, S. H., Kang, H., Ryu, H. W. and Lee, S., "Effects of Pb and $CO_2$ on Soil microbial community associated with pinus densiflora-Lab," J. Ecol. Field Bio., 39(6), 551-558(2006).

피인용 문헌

  1. Current Generation from Microbial Fuel Cell Using Stainless Steel Wire as Anode Electrode vol.36, pp.11, 2014, https://doi.org/10.4491/KSEE.2014.36.11.753