DOI QR코드

DOI QR Code

A Study on the Exhaust Gas Recirculation in a MILD Combustion Furnace by Using the Coanda Nozzle Effect

MILD 연소로에서 Coanda 노즐 효과를 이용한 배기가스 재순환에 관한 연구

  • Received : 2013.11.09
  • Accepted : 2013.12.05
  • Published : 2013.12.30

Abstract

A MILD (Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow rate of hot exhaust gas to the combustion furnace. The present study used the MILD combustor, which has coaxial cylindrical tube. The outside tube of the MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. A numerical analysis was accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of coanda nozzle geometrical parameters, nozzle passage gap length, nozzle passage length, nozzle angle and expansion length. The optimal configuration of coanda nozzle for the best entrainment flow rate was gap length, 0.5 mm, expansion angle, 4o and expansion length, 146 mm. The nozzle passage length was irrelevant to the exhaust gas entrainement.

질소산화물 저감에 큰 효과가 있는 MILD 연소는 고온의 배기가스가 연소로내에 유입되는 양에 따라 질소산화물 저감 특성이 많은 영향을 받는다. 본 연구에서는 동심원관 형태의 MILD 연소로에서 바깥 원통의 배기가스 통로에서부터 안쪽 원통의 연소통로 사이에 연결관을 설치하고 배기가스를 유입하기 위해 coanda 노즐을 사용하였다. 이러한 coanda 노즐의 기하학적 형상 변화에 따라 고압공기 유량, 배기가스 유입량 특성을 수치해석을 통해 살펴봄으로써 최적의 coanda 노즐 형상을 도출하는 것을 본 연구의 목적으로 하였다. 본 연구의 전산 해석의 결과는 conada 노즐의 노즐 통로 간격이 0.5 mm, 노즐 각도 $4^{\circ}$, 노즐 확관 길이 146 mm일 때 최적의 유입량비가 되었고 노즐 통로 수직 길이는 유입량비에 무관하였다.

Keywords

References

  1. Wuuning, J. A. and Wunning, J. G., "Flameless oxidation to reduce thermal NO-formation," Prog. Energy Combust. Sci., 23, 81-97(1997).
  2. Katsuki, M. and Hasegawa, T., "The science of technology of combustion in highly preheated air," 27 Symp (Int) Combustion, pp. 3135-3146(1998).
  3. Cavaliere, A., Joannon, De M. and Ragucci, R. "Mild combustion of high temperature reactants," 2nd International Symposium on High Temperature Air Combustion, 1999.
  4. Plessing, T., Peters, N. and Wunning, J. G., "Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation," 27 Symp (Int) Combustion, pp. 3197-3204, 1998.
  5. Frazan, H., Maringo, G. J., Riggs, J. D., Yagiela, A. S. and Newell, R. J., "Reburning with Powder River Basin Coal to Achieve $SO_2$ an $NO_x$ Compliance," Proc. of the Power-Gen Sixth International Conference, Dallas, pp. 175-187, 1993.
  6. Ha, J. S., Kim T. K. and Shim, S. H., "A numerical study of the air fuel ratio effect on the combustion characteristics in a MILD combustor," Kor. Soc. Environ. Eng., 32(6), 587-592(2010).
  7. Kim, T. K., Shim, S. H., Chang, H. S. and Ha, J. S., "A numerical study of the combustion characteristics in a MILD combustor with the change of the fuel and air nozzle position and air mass flow rate," Kor. Soc. Environ. Eng., 33(5), 325-331(2011). https://doi.org/10.4491/KSEE.2011.33.5.325
  8. Shim S. H. and Ha, J. S., "A study on the flow entrainment characteristics of a coaxial nozzle used in a MILD combustor with the change of nozzle position and flow condition," Kor. Soc. Environ. Eng., 34(2), 103-108(2012). https://doi.org/10.4491/KSEE.2012.34.2.103
  9. Launder, B. E. and Spalding, D. B., "The Numerical Computation of Turbulent Flows. Computer methods in Applied Mechanics and Engineering," pp. 269-289(1974).
  10. Magnussen, B. F. and Hjertager, B. H., "On mathematical model of turbulent combustion with special emphasis on soot formation and combustion," In 16th Symp. on Combustion, 1976.
  11. Liu, F., Becker, H. A. and Bindar, Y. "A comparative modeling in gas-fired furnaces using the Simple Grey Gas and the Weighted-Sum-of-Grey-Gases Models," Int. J. Heat Mass Transfer, 41, 3357-3371(1998). https://doi.org/10.1016/S0017-9310(98)00098-2
  12. Patankar, S. V., "Numerical Heat Transfer and Fluid Flow," pp. 126-131(1980).