DOI QR코드

DOI QR Code

A Study on the Electrical Difference for The Limbs and Thoracic Impedance using Real-Time Bio-impedance Measurement System

실시간 생체임피던스 측정 시스템을 이용한 사지와 흉부 임피던스에 대한 전기적인 차이 연구

  • 조영창 (경운대학교 항공정보통신공학과) ;
  • 김민수 (계명대학교) ;
  • 윤정오 (경운대학교 항공정보통신공학과)
  • Received : 2013.08.21
  • Accepted : 2013.09.30
  • Published : 2013.12.31

Abstract

Bio-impedance measurement system(BMS) is non-invasive and easy to implement a measurement method that allows determining the water content of a patient. The measurement conditions, the hardware specifications and the configurations of BMS devices must be well chosen in order to get correct and reproducible results. BMS was then conducted for the limbs and the thoracic using a lock-in amplifier and LabView control system with a frequency range of 1kHz-100kHz. From both the measurement data and the simulation results, we verified that the parameters in the proposed equivalent model and the trend of impedance variation according to the multi-frequency of applied current source are similar to those of human body. We believe that the real-time BMS developed in this study is highly reliable and applicable to the research on the clinical characteristics of the human being's impedance.

생체임피던스 측정 시스템은 비침습적이고, 환자의 수분함량을 쉽게 측정할 수 있게 한다. 생체임피던스 측정에서 정확하고 재현성 있는 결과를 얻기 위해서는 측정조건과 하드웨어 사양의 선택 및 구성이 매우 중요하다. 본 연구에서는 1kHz에서 100kHz 주파수 범위에서 락인엠프, 랩뷰 제어시스템을 이용하여 사지와 흉부에 대해 생체임피던스 측정을 각각 수행하였으며, 측정 및 모의실험 결과를 통해 제안한 모델의 파라메터와 인가 전원의 주파수에 따른 저항 및 리액턴스 변화가 인체실험 결과와 유사한 결과로 나타남을 확인하였다. 제안한 실시간 생체임피던스 측정 시스템은 높은 신뢰성을 가지며, 인체에 대한 임피던스의 임상적인 특성 연구에도 적용될 수 있을 것이다.

Keywords

References

  1. S. Grimnes, "Impedance measurement of individual skin surface electrodes," Med. Biol. Eng. Comput., vol. 21, pp. 750-755, 1983. https://doi.org/10.1007/BF02464038
  2. OG. Martinsen, S. Grimnes, and J. Karlwen, "Electrical methods for skin moisture assessment," Skin Pharmacol., vol. 8, pp. 237-245, 1995. https://doi.org/10.1159/000211353
  3. 박성욱, 박종욱, "다층 신경망과 피부색 모델을 이용한 피부영역 검출", 한국산업정보학회 논문지, vol.16, No.2, pp.31-38, 2011년 6월.
  4. B. E. Lingwood, P. B. Colditz, and L. C. Ward, "Biomedical applications of electrical impedance analysis," Proc. of ISSAP, vol. 1, pp. 367-370, Aug. 1999.
  5. L. Zhao, L. K. Hung, and Y. T. Zhang, "Electrical properties of normal and scarred skin," Proc. of the IEEE Int. Conf. on Engineering in Medicine and Biology Society, vol. 6, pp. 2917-2920, Nov. 1998.
  6. A. F. Coston and J. K. -J. Li, "Transdermal drug delivery: An assessment of skin impedance models," Proc. of the IEEE Conf. on Bioengineering, pp. 319-320, March 2003.
  7. A. H. Lanckermeier, E. T. McAdams, G. P. Moss, and A. D. Wolfson, "On vivo impedance spectroscopy of human skin. Theory and problems in monitoring of passive percutaneous drug delivery," Ann. New York Acad. Sci., vol. 873, pp. 197-213, 1999. https://doi.org/10.1111/j.1749-6632.1999.tb09468.x
  8. G. Medrano, "Modeling the Influence of Body Position in Bioimpedance Measurements," Proceedings of the 29th Annual International Conference of the IEEE EMBS Lyon, France, 2007.
  9. L. Beckmann, D. Riesen, S. Leonhardt,"Optimal electrode placement and frequency range selection for the detection of lung water using Bioimpedance Spectroscopy," Proceedings of the 29th Annual International Conference of the IEEE EMBS Lyon, France, 2007.
  10. S. Grimnes and G. Martinsen, "Bioimpedance", wiley encyclopedia of Biomedical Engineering, John Wiley & Sons Inc 2006.
  11. S. Grimnes, O. Martinsen, "Bioimpedance and bioelectricity basics", in 1sted. Academic Press, 2000.
  12. K. S. Cole and R. H. Cole, "Dispersion and absorption in dielectrics. I. Alternating current characteristics," J. Chem. Phys., vol. 9, pp. 110-122, 1941.
  13. R. Buendia, P. Bogonez-Franco, L. Nescolarde, R. Seoane, "Influence of electrode mismatch on Cole parameter estimation from Total Right Side Electrical Bioimpedance Spectroscopy measurements," Med. Eng. & Phys. vol. 34, pp. 1024-1028, 2012. https://doi.org/10.1016/j.medengphy.2012.05.011
  14. R. Buendia, R. Gil-Pita, F. Seoane,"Cole parameter estimation from the modulus of the electrical bioimpedance for assessment fo body composition. A full spectroscopy approach," J electr. Bioimp. vol. 2, pp. 72-78, 2011.

Cited by

  1. Characteristics of Bio-impedance for Implantable Electrode Design in Human Skin vol.19, pp.4, 2014, https://doi.org/10.9723/jksiis.2014.19.4.009
  2. Analysis of Bioimpedance Change and the Characteristics of Blood Pressure according to Posture vol.19, pp.5, 2014, https://doi.org/10.9723/jksiis.2014.19.5.025
  3. Analysis of affected and non-affected sides of stroke hemiparalysis patients and correlations between rehabilitation therapy assessments using the bioelectrical impedance analysis method vol.28, pp.12, 2016, https://doi.org/10.1589/jpts.28.3306
  4. Predicting body compositions of live finishing pigs based on bioelectrical impedance analysis vol.63, pp.2, 2013, https://doi.org/10.5187/jast.2021.e31