DOI QR코드

DOI QR Code

Performance of Successive-Cancellation List Decoding of Extended-Minimum Distance Polar Codes

최소거리가 확장된 극 부호의 연속 제거 리스트 복호 성능

  • 류대현 (성균관대학교 정보통신대학 통신 및 부호이론 연구실) ;
  • 김재열 (삼성전자 DMC연구소) ;
  • 김종환 (성균관대학교 정보통신대학 통신 및 부호이론 연구실) ;
  • 김상효 (성균관대학교 정보통신대학 통신 및 부호이론 연구실)
  • Received : 2012.09.30
  • Accepted : 2013.01.07
  • Published : 2013.01.31

Abstract

Polar codes are the first provable error correcting code achieving the symmetric channel capacity in a wide case of binary input discrete memoryless channel(BI-DMC). However, finite length polar codes have an error floor problem with successive-cancellation list(SCL) decoder. From previous works, we can solve this problem by concatenating CRC(Cyclic Redundancy Check) codes. In this paper we propose to make polar codes having extended-minimum distance from original polar codes without outer codes using correlation with generate matrix of polar codes and that of RM(Reed-Muller) codes. And we compare performance of proposed polar codes with that of polar codes concatenating CRC codes.

극 부호(polar codes)는 광범위한 이진 입력 이산 무기억 채널(binary input discrete memoryless channel: BI-DMC)에서 채널 용량에 달성하는 것이 이론적으로 증명된 최초의 채널부호이다. 하지만 유한한 길이를 갖는 극 부호는 연속 제거 리스트(successive-cancellation list: SCL) 복호기에서 오류마루(error floor)가 발생하는 문제점이 있다. 선행 연구에 따르면 이 오류마루 현상은 극 부호에 오류 검출 코드(error detection codes) 중 하나인 CRC(Cyclic Redundancy Check) 부호를 연접했을 때 효과적으로 낮출 수 있는 것으로 알려져 있다. 본 논문에서는 외부 부호(outer codes)를 사용하지 않고 극 부호와 RM(Reed-Muller) 부호의 생성 행렬 연관성을 이용하여 기존 극 부호보다 확장된 최소거리를 갖는 극 부호를 제안한다. 그리고 제안된 극 부호와 CRC 부호를 연접한 극 부호의 성능을 비교한다.

Keywords

References

  1. K. Yang, "Covering radius of Reed-Muller codes," in Proc. KICS Int. Conf. Commun. 1995 (KICS ICC 1995), pp. 215-218, Jeju Island, Korea, Jan. 1995.
  2. D. Ryu, J. Y. Kim, J. -H. Kim, and S. -H. Kim, "Performance of list decoding of minimum distance-extended polar codes," in Proc. KICS Int. Conf. Commun. 2012 (KICS ICC 2012), pp. 445-446, Jeju Island, Korea, Jun. 2012.
  3. C. E. Shannon, "A mathematical theory of communication," Bell System Tech. J., vol. 27, no. 1, pp. 379-423, 623-656, Jul./Oct. 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  4. E. Arıkan, "Channel polarization: a method for constructing capacity- achieving codes for symmetric binary- input memoryless channels," IEEE Trans. Inform. Theory, vol. 55, no. 7, pp. 3051-3073, Jul. 2009. https://doi.org/10.1109/TIT.2009.2021379
  5. R. Mori and T. Tanaka, "Performance of polar codes with the construction using density evolution," IEEE Commun. Lett., vol. 13, no. 7, pp. 519-521, Jul. 2009. https://doi.org/10.1109/LCOMM.2009.090428
  6. N. Goela, S.B. Korada and M. Gastpar, "On LP decoding of polar codes," in Proc. IEEE Inform. Theory Workshop (ITW), pp. 1-5, Dublin, Ireland, Aug./Sep. 2010.
  7. E. Arıkan, "A performance comparison of polar codes and Reed-Muller codes," IEEE Commun. Lett., vol. 12, no. 6, pp. 447-449, Jun. 2008. https://doi.org/10.1109/LCOMM.2008.080017
  8. N. Hussami, R. Urbanke and S.B. Korada, "Performance of polar codes for channel and source coding," in Proc. IEEE Int. Symp. Inform. Theroy, pp. 1488-1492, Seoul, Korea, Jun./Jul. 2009.
  9. I. Tal and A. Vardy, "How to construct polar codes," 2011, from arXiv:1105.6164v2
  10. E. Sasoglu, E. Telatar and E. Arıkan, "Polarization for arbitrary discrete memoryless channels," in Proc. IEEE Inform. Theory Workshop (ITW), pp. 144-148, Taormina, Italy, Oct. 2009.
  11. E. Sasoglu, "Polar codes for discrete alphabets," in Proc. IEEE Int. Symp. Inform. Theory (ISIT), pp. 2137-2141, Cambridge, MA, Jul. 2012.
  12. M. Seidl and J.B. Huber, "Improving successive cancellation decoding of polar codes by usage of inner block codes," in Proc. Int. Symp. Turbo Codes and Iterative Inform. (ISTC), pp. 103-106, Brest, France, Sep. 2010.
  13. I. Tal and A. Vardy, "List decoding of polar codes," 2012, from arXiv:1206.0050v1
  14. R. Mori and T. Tanaka, "Performance and construction of polar codes on symmetric binary-input memoryless channels," in Proc. IEEE Int. Symp. Inform. Theroy, pp. 1496-1500, Seoul, Korea, Jun./Jul. 2009.
  15. D. E. muller, "Application of boolean algebra to switching circuit design and to error correction," IRE Trans. Electronic Computers, vol. EC-3, no. 3, pp. 6-12, Sep. 1954.
  16. I. Reed, "A class of multiple-errorcorrecting codes and the decoding scheme," IRE Trans, Inform. Theory, vol. 4, no. 4, pp. 39-44, Sep. 1954.