DOI QR코드

DOI QR Code

NLOS 상태 추정을 이용한 위치 정보 신뢰성 기반의 정밀 위치 측정 시스템

Location Information Reliability-Based Precision Locating System Using NLOS Condition Estimation

  • 손상현 (부산대학교 컴퓨터공학과 임베디드시스템 연구실) ;
  • 최훈 (부산대학교 컴퓨터공학과 임베디드시스템 연구실) ;
  • 조현태 (KAIST 스마트IT융합시스템연구단) ;
  • 백윤주 (부산대학교 컴퓨터공학과 임베디드시스템 연구실)
  • 투고 : 2012.09.30
  • 심사 : 2013.01.07
  • 발행 : 2013.01.31

초록

이동형 장치의 위치 정보를 확보하기 위해 다양한 위치 측정 시스템이 연구되고 있으며 현재 가장 많이 이용하는 시스템은 위성 정보를 이용하는 GPS와 무선 네트워크를 이용하는 RTLS가 있다. 장치 주변의 장애물은 장치와 위성 혹은 무선 통신 앵커와 NLOS 상태를 유발하며 측정 정확도를 떨어뜨린다. 본 논문에서는 대상의 위치 측정을 위해 두 개의 시스템을 함께 이용해 장치 주변의 NLOS 상태를 파악하여 장치간의 측정 신뢰성 정보를 추정함으로써 측위 정확도를 향상시키는 기법을 제안한다. 또한 NLOS 상태의 파악을 위한 위성 정보의 분석 방법에 대해서 설명하고 이를 이용한 위치 측정 시스템을 제안한다. 본 시스템의 성능평가를 위해 다양한 환경에서의 NLOS 상태 판별에 대한 테스트를 수행하였으며 해당 측정결과를 이용한 위치 측정 시스템을 구현하여 시뮬레이션 하였다. NLOS 상태 파악을 위한 실험 결과 약 97% 정도의 성공률로 NLOS 상태를 판별하였다. 또한 NLOS 상태 판별 정보를 이용한 동작 성능을 모의실험한 결과 단독으로 위치 측정한 결과에 비해 성능이 89% 향상되는 것을 확인하였다.

Recently, mobile devices were increased and there was a sharp rise in demand. To exploit the location information of each device, many researcher was studying locating systems. The favorite locating or positioning systems were a GPS using satellites and a RTLS using wireless communication between devices. If some obstacle existed nearby the target device, The system have difference of performance. The obstacles near targets were caused signal disconnection and reflection because of NLOS condition. As the result, the NLOS condition degrade the locating performance. In this paper, we propose a locating system which is cooperated two systems using information reliability estimates from LOS/NLOS condition. We developed proposed system. In addition, we performed fields test and simulation tests at various environment for performance evaluation. As the result, the test showed 97% success rate to estimate NLOS condition. Furthermore, the simulation result of our locating system was increased to 89% compared with a single system.

키워드

참고문헌

  1. H. Choi, S. Son, and Y. Baek, "Multi-step location system using mobile reader and trajectory information in container port environments," J. KICS, vol. 36, no. 12, pp. 966-974, Dec. 2011.
  2. H. Choi, Y. Jung, and Y. Baek, "Two-step locating system for harsh marine port environments," in proc. 2011 IEEE Int. Conf. RFID., pp. 106-112, April 2011.
  3. Publications and Standards from the National Marine Electronics Association (NMEA). National Marine Electronics Association, Retrieved June, 27, 2008, from http://www.nmea.org/pub/index.html.
  4. R. B. Langley (May 1999). "Dilution of Precision". GPS World. Retrieved Oct., 12, 2011, from http://gauss.gge.unb.ca/papers.pdf/gpsworld.may99.pdf.
  5. S. Son, J. Kim, H. Choi, Y. Jung, and Y. Baek, "Design and implementation of a real time locating systems over IEEE 802.15.4a radio for port logistics," in proc. Int. Conf. Inform. Techn.: New Generations (ITNG), pp. 1183-1188 , Apr. 2010.
  6. Nanotron, nanoLOC TRX Transceiver (NA5TR1) User Guide Ver.1.02 (NA-06-0239-0385-1.02), Retrieved from http://www.nanotron.com.
  7. IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a (TG4a), Retrieved Mar., 2008, from http://ieee802.org/15/pub/TG4a.html.
  8. H. Cho, H. Choi, W. Lee, Y. Jung, and Y. Baek, "Design and implementation of a smart tag system for IT-based port logistics," Lect. Notes Comput. Sc., vol. 4159/2006, vol. 4159, pp. 32-43, Sep, 2006.
  9. Y. Chan, Y. C. Hang, and P. Ching, "Exact and approximate maximum likelihood localization algorithms," IEEE Trans. on Veh. Technol., vol. 55, iss. 1, pp. 10-16, Jan, 2006. https://doi.org/10.1109/TVT.2005.861162
  10. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan "The cricket location-support system," in proc. ACM Int. Conf. Mobile Computing and Networking (MobiCom), pp. 32-43, Aug, 2000.
  11. Y. T. Chan and K. C. Ho, "A simple and efficient estimator for hyperbolic location," IEEE Trans. Signal Proces., pp. 1905-1915, Vol. 42, no. 8. Aug. 1994. https://doi.org/10.1109/78.301830
  12. J. Borras, P. Hatrack, and N. Mandayam "Decision theoretic framework for NLOS identification," in proc. IEEE VTC 98., pp. 1583-1587. May, 1998
  13. RA. Saeed, S. Khatun, BM. Ali, and MA. Khazani "Ultrawideband(UWB) geolocation in NLOS multipath fading environments," in proc. IEEE Int. Conf. Commu., pp. 1068-1073, Nov, 2005.
  14. Y-H. Jo, J-Y. Lee, D-H. Ha, and S-H. Kang "Accuracy enhancement for UWB indoor positioning using ray tracing." in proc. IEEE/ION Position, Location, And Navigation Symp., pp. 565-568, Apr, 2006
  15. M. Heidari, FO. Akgul, and K. Pahlavan " Identification of the absence of direct path in indoor localization systems," in proc. IEEE Int. Symp. Personal, Indoor, and Mobile Radio Communications, pp. 1-6, Sep, 2007.
  16. K. Yu and YJ. Guo "NLOS error mitigation for mobile location estimation in wireless networks," in proc. IEEE VTC 2007-Spring., pp. 1071-1075, Apr, 2007.
  17. S. Venkatesh and R. M. Buehrer "NLOS mitigation using linear programming in ultrawideband location-aware networks," IEEE Trans Veh Technol, vol. 56, no. 5, pp. 3182-3198, Sep, 2007. https://doi.org/10.1109/TVT.2007.900397
  18. J. Schroeder, S. Galler, K. Kyamakya, and T. Kaiser "Threedimensional indoor localization in non line of sight UWB channels." in proc. IEEE Int. Conf. on Ultra-Wideband (ICUWB), pp. 89-93, Sep, 2007
  19. H. Choi, S. Son, and Y. Baek, "Multi-step location system using mobile reader and trajectory information in container port environments," J. KICS, vol. 36, no. 12, pp. 966-974, Dec. 2011. https://doi.org/10.7840/KICS.2011.36A.12.966

피인용 문헌

  1. Location Estimation Method Employing Fingerprinting Scheme based on K-Nearest Neighbor Algorithm under WLAN Environment of Ship vol.18, pp.10, 2014, https://doi.org/10.6109/jkiice.2014.18.10.2530
  2. A Location Estimation Method Using TDOA Scheme in Vessel Environment vol.19, pp.8, 2015, https://doi.org/10.6109/jkiice.2015.19.8.1934