DOI QR코드

DOI QR Code

Optical and Electrical Properties of Sputtered ZnO:Al Thin Films with Various Annealing Temperature

후열처리에 따른 스퍼터된 ZnO:Al 박막의 전기적, 광학적 특성

  • Kim, D.K. (Advanced Development Group, Samsung Electronics Co. Ltd.) ;
  • Kim, H.B. (Department of Electronic and Information Engineering, Cheongju University)
  • Received : 2012.11.06
  • Accepted : 2013.01.14
  • Published : 2013.01.30

Abstract

ZnO:Al thin films deposited by RF magnetron sputtering were post-annealed and the electrical and optical properties of ZnO:Al thin films were investigated before and after anneling. We confirmed that the ZnO:Al thin film was affected by post-annealing temperature. As post-annealing temperature increases, crystallinity and transmittance in visible area (400~800 nm) of ZnO:Al thin films decreased. While sheet resistance of thin films increased sharply with increasing to $400^{\circ}C$. This result is due to reduce of carrier concentration caused by absorption of $O_2$ or $N_2$ at surface of thin film.

RF magnetron sputtering 법을 이용하여 증착된 ZnO:Al 박막을 열처리하여 열처리 전 후 ZnO:Al 박막의 전기적, 광학적 특성을 연구하였다. 열처리 온도에 따라 ZnO:Al 박막의 특성이 많이 영향 받음을 확인하였다. 열처리 온도가 증가함에 따라 ZnO:Al 박막의 결정성과 가시광선 영역(400~800 nm)에서 투과도는 감소함을 보였다. 반면, 박막의 비저항은 $400^{\circ}C$로 열처리 온도가 증가함에 따라 급격히 증가하였다. 이는 박막 표면에 $O_2$ 또는 $N_2$가 흡착하여 캐리어 농도 감소에 의한 것으로 판단된다.

Keywords

References

  1. S. W. Cho, Y. T. Kim, W. H. Shim, S. Y. Park, K. D. Kim, H. O. Seo, N. K. Dey, J. H. Lim, Y. S. Jeong, K. H. Lee, Y. D. Kim, and D. C. Lim, Appl. Phys. Lett. 98, 023102 (2011). https://doi.org/10.1063/1.3537961
  2. C. H. Kuo, C. L. Yeh, P. H. Chen, W. C. Lai, C. J. Tun, J. K. Sheu, and G. C. Chi, Electrochem. Solid-State Lett. 11, H269 (2008). https://doi.org/10.1149/1.2953680
  3. S. J. Jeong, D. K. Kim, and H. B. Kim, J. Korean Vac. Soc. 21, 17 (2012). https://doi.org/10.5757/JKVS.2012.21.1.17
  4. D. K. Kim and H. B. Kim, J. Korean Vac. Soc. 20, 141 (2011). https://doi.org/10.5757/JKVS.2011.20.2.141
  5. M. Lorenz, E. M. Kaidashev, H. von Wenckstern, V. Riede, C. Bundesmann, D. Spemann, G. Benndorf, H. Hochmuth, A. Rahm, H. C. Semmelhack, and M. Grundmann, Solid-State Electron. 47, 2205 (2003). https://doi.org/10.1016/S0038-1101(03)00198-9
  6. A. Maldonado, S. T. Guerra, M. M. Lira, and M. L. Olvera, Sol. Energ. Mater. Sol. C. 90, 742 (2006). https://doi.org/10.1016/j.solmat.2005.04.011
  7. K. Ellmer, J. Phys. D: Appl. Phys. 34, 3097 (2001). https://doi.org/10.1088/0022-3727/34/21/301
  8. S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, J. Phys. D: Appl. Phys. 33, R17 (2000). https://doi.org/10.1088/0022-3727/33/4/201
  9. B. P. Shantheyanda, V. O. Todi, K. B. Sundaram, A. Vijayakumar, and I. Oladeji, J. Vac. Sci. Technol. A 29, 051514 (2011). https://doi.org/10.1116/1.3624787
  10. M. Y. Zhang and G. J. Cheng, Appl. Phys. Lett. 98, 051904 (2011). https://doi.org/10.1063/1.3549860
  11. W. H. Kim, W. J. Maeng, M. K. Kim, and H. J. Kim, J. Electrochem. Soc. 158, D495 (2011). https://doi.org/10.1149/1.3599055
  12. S. H. Jeong and J. H. Boo, Thin Solid Films 447, 105 (2004). https://doi.org/10.1016/j.tsf.2003.09.031
  13. H. Tong, Z. Denga, Z. Liua, C. Huanga, J. Huanga, H. Lana, C. Wang, and Y. Cao, Appl. Surf. Sci. 257, 4906 (2011). https://doi.org/10.1016/j.apsusc.2010.12.144
  14. T. Minami, T. Hirano, T. Miyata, and J. Nomoto, Thin Solid Films 520, 3803 (2012). https://doi.org/10.1016/j.tsf.2011.10.067
  15. Y. M. Lu, W. S. Hwang, W. Y. Liu, and J. S. Yang, Mater. Chem. Phys. 72, 269 (2001). https://doi.org/10.1016/S0254-0584(01)00450-3
  16. B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, MA, 1978) p. 102.
  17. S. J. Yun, J. W. Lim, J. S. Noh, B. G. Chae, and H. T. Kim, Jpn. J. Appl. Phys. 47, 3067 (2008). https://doi.org/10.1143/JJAP.47.3067
  18. S. S. Lin, J. L. Huang, and P. Sajgaik, Surf. Coat. Technol. 185, 254 (2004). https://doi.org/10.1016/j.surfcoat.2003.12.007

Cited by

  1. Optical and Electrical Properties of Sputtered Al Doped ZnO Thin Films with Various Working Pressure vol.22, pp.5, 2013, https://doi.org/10.5757/JKVS.2013.22.5.257