DOI QR코드

DOI QR Code

Study of Air-Breathing Polymer Electrolyte Membrane Fuel Cell Using Metal-Coated Polycarbonate as a Material for Bipolar Plates

도금된 폴리카보네이트 분리판을 이용한 공기 호흡형 고분자 전해질막 연료전지에 관한 연구

  • Park, Taehyun (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Lee, Yoon Ho (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Chang, Ikwhang (Department of Intelligent Convergence Systems, Seoul Nat'l Univ.) ;
  • Ji, Sanghoon (Department of Intelligent Convergence Systems, Seoul Nat'l Univ.) ;
  • Paek, Jun Yeol (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Cha, Suk Won (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 박태현 (서울대학교 기계항공공학부) ;
  • 이윤호 (서울대학교 기계항공공학부) ;
  • 장익황 (서울대학교 지능형융합시스템학과) ;
  • 지상훈 (서울대학교 지능형융합시스템학과) ;
  • 백준열 (서울대학교 기계항공공학부) ;
  • 차석원 (서울대학교 기계항공공학부)
  • Received : 2012.07.02
  • Accepted : 2012.10.22
  • Published : 2013.02.01

Abstract

In this study, a metal-plated polycarbonate was adopted as a material for bipolar plates in a polymer electrolyte membrane fuel cell (PEMFC). The coated layers included 40-${\mu}m$-thick copper, 10-${\mu}m$-thick nickel, and 0.3-${\mu}m$-thick gold that respectively played the roles of current conduction, adhesion between copper and gold, and minimization of surface corrosion. The maximum power of the air-breathing PEMFC with polycarbonate bipolar plates was $120mW/cm^2$, which was similar to that of graphite bipolar plates. Finally, the maximum power of a 12-cell stack of polycarbonate bipolar plates was $132.7mW/cm^2$, and it had an operating time of 12 h. Therefore, this was considered a suitable material for bipolar plates in PEMFCs.

본 연구에서는 도금된 폴리카보네이트를 사용하여 공기호흡형 고분자 전해질막 연료전지의 분리판을 제작하였다. 도금층은 구리 $40{\mu}m$, 니켈 $10{\mu}m$, 금 $0.3{\mu}m$ 로 구성되었으며, 구리는 전기 전도층, 니켈은 구리와 금의 결합, 금은 도금층의 부식을 방지하기 위해 사용되었다. 본 분리판을 사용하여 성능을 평가한 결과 $120mW/cm^2$ 의 전력 밀도를 보였으며 이는 동일한 조건에서 그라파이트 분리판을 사용했을 때의 전력밀도와 거의 차이가 나지 않았다. 또한 평판형 12 층 스택의 공기호흡형 연료전지를 구성한 결과 각 전지당 $132.7mW/cm^2$ 의 성능을 보였으며 이를 12 시간 운전해본 결과 안정적인 성능을 보여 공기호흡형 고분자 전해질 연료전지의 분리판으로 적합함을 확인하였다.

Keywords

References

  1. O'hayre, R., Cha, S. W., Colella, W. and Prinz, F. B., 2009, Fuel Cell Fundamentals, Wiley, New York.
  2. Larminie, J. and Dicks, Andrew., 2003, Fuel Cell Systems Explained, Wiley, New York.
  3. Tsuchiya, H. and Kobayashi, O., 2004, "Mass Production Cost of PEM Fuel Cell by Learning Curve," Int'l J. of Hydrogen Energy, Vol. 29, pp. 985-990. https://doi.org/10.1016/j.ijhydene.2003.10.011
  4. Borup, R., L. and Vanderborgh, N. E., 1995, "Design and Testing Criteria for Bipolar Plate Materials for PEM Fuel Cell Applications," MRS Spring Meeting, 393:151.
  5. Mehta, V., Cooper, J., S., 2003, "Review and Analysis of PEM Fuel Cell Design and Manufacturing," J. of Power Sources, Vol. 114, No. 1, pp. 32-53. https://doi.org/10.1016/S0378-7753(02)00542-6
  6. Makkus, R., C., Janssen, A., H., H., de Brujin, F., A. and Mallant, R., K., A., M., 2000, "Stainless Steel for Cost-competitive Bipolar Plates in PEMFCs," Fuel Cells Bulletin, Vol. 3, No. 17, pp. 5-9.
  7. Cooper, J. S., 2004, "Design Analysis of PEMFC Bipolar Plates Considering Stack Manufacturing and Environment Impact," J. of Power Sources, Vol. 129, No. 2, pp. 152-169. https://doi.org/10.1016/j.jpowsour.2003.11.037
  8. Davies, D., P., Adcock, P., L., Turpin, M. and Rowen, S., J., 2000, "Stainless Steel as a Bipolar Plate Material for Solid Polymer Fuel Cells," J. of Power Sources, Vol. 86, pp. 237-242. https://doi.org/10.1016/S0378-7753(99)00524-8
  9. Wang, H., Sweikart, M., A. and Turner, J., A., 2003, "Stainless Steel as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells," J. of Power Sources, Vol. 115. pp. 243-251. https://doi.org/10.1016/S0378-7753(03)00023-5
  10. Wang, H. and Turner, J., A., 2003, "Ferritic Stainless Steels as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells," J. of Power Sources, Vol. 128, pp. 193-200.
  11. Wind, J., Spah, R., Kaiser, W. and Bohm, G., 2002, "Metallic Bipolar Plates for PEM Fuel Cells," J. of Power Sources, Vol. 105, pp. 256-260. https://doi.org/10.1016/S0378-7753(01)00950-8
  12. Lee, S., J., Huang, C., H., Lai, J., J. and Chen, Y., P., 2004, "Corrosion-resistant Component for PEM Fuel Cells," J. of Power Sources, Vol. 131, pp. 162-168. https://doi.org/10.1016/j.jpowsour.2004.01.008
  13. Los Alamos National Laboratory Home Page, http://www.ott.doe.gov/pdfs/contractor.pdf
  14. Kim, S., H., Cha, H., Y., Miesse, C., M., Jang, J., H., Oh, Y., S. and Cha, S., W., 2009, "Air-breathing Miniature Planar Stack Using the Flexible Printed Circuit Board as a Current Collector," Int'l J. of Hydrogen Energy, Vol. 34, No. 1. pp. 459-466. https://doi.org/10.1016/j.ijhydene.2008.09.088
  15. Li, X. and Sabir, I., 2005, "Review of Bipolar Plates in PEM Fuel Cells : Flow-field Designs," Int'l J. of Hydrogen Energy, Vol. 30, pp. 359-371. https://doi.org/10.1016/j.ijhydene.2004.09.019
  16. Lee, W., K., Ho, C., H., Zee, J., W., V. and Murthy, M., 1999, "The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell," J. of Power Sources, Vol. 84, No. 1. pp. 45-51. https://doi.org/10.1016/S0378-7753(99)00298-0
  17. Zhang, J., Tang, Y., Song, C., Zhang, J. and Wang, H., 2006, "PEM Fuel Cell Open Circuit Voltage (OCV) in the Temperature Range of 23$^{\circ}C$ to 120$^{\circ}C$," J. of Power Sources, Vol. 163, No. 1, pp. 532-537. https://doi.org/10.1016/j.jpowsour.2006.09.026
  18. Fabian, T., Posner, J., D., O'Hayre, R., Cha, S., W., Eaton, J., K., Prinz, F., B. and Santiago, J., G., 2006, "The Role of Ambient Conditions on the Performance of a Planar, Air-breathing Hydrogen PEM Fuel Cell," J. of Power Sources, Vol. 161, No. 1. pp. 168-182. https://doi.org/10.1016/j.jpowsour.2006.03.054
  19. Bussayajarn, N., Ming, H., Hoong, K., K., Stephen, W., Y., M. and Hwa, C., S., 2009, "Planar Air Breathing PEMFC with Self-humidifying MEA and Open Cathode Geometry Design for Portable Applications," Int'l J. of Hydrogen Energy, Vol. 34, No. 18. pp. 7761-7767. https://doi.org/10.1016/j.ijhydene.2009.07.077
  20. Ryan, J. T., 1978, "Impact and yield properties of polycarbonate as a function of strain rate, molecular weight, thermal history, and temperature," Polymer Eng. & Sci, Vol. 18, No. 4, pp. 264-267. https://doi.org/10.1002/pen.760180405