DOI QR코드

DOI QR Code

Material Design for Metal Oxide Chemiresistive Gas Sensors

  • Korotcenkov, G. (Department of Material Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Han, S.H. (Division of Maritime Transportation System, Mokpo National Maritime University) ;
  • Cho, B.K. (Department of Material Science and Engineering, Gwangju Institute of Science and Technology)
  • Received : 2012.09.04
  • Accepted : 2012.09.24
  • Published : 2013.01.31

Abstract

Metal oxides designed for application in conductometric gas sensors and approaches used for synthesis of metal oxides with improved gas sensing characteristics are discussed in present article.

Keywords

References

  1. G. Korotcenkov and V. Sysoev, "Conductometric metal oxide gas sensors", In: G. Korotcenkov (ed). Chemical Sensors, Vol. 4: Solid State Devices. Momentum Press, New York, pp. 39-186, 2011.
  2. D. Kohl, "Surface processes in the detection of reducing gases with $SnO_{2}$-based devices", Sens. Actuators, Vol. 18, pp. 71-113, 1989. https://doi.org/10.1016/0250-6874(89)87026-X
  3. N. Barsan, M. Schweizer-Berberich, and W. Gopel, "Fundamental and practical aspects in the design of nanoscaled $SnO_{2}$ gas sensors. A status report", Fresen. J. Anal. Chem., Vol. 365, pp. 287-304, 1999. https://doi.org/10.1007/s002160051490
  4. A. Gurlo, "Interplay between $O_{2}$ and $SnO_{2}$ : Oxygen ionosorption and spectroscopic evidence for adsorbed oxygen", ChemPhysChem., Vol. 7, pp. 2041-2052, 2006. https://doi.org/10.1002/cphc.200600292
  5. M. Batzill, "Surface science studies of gas sensing materials: $SnO_{2}$", Sensors, Vol. 6, pp. 1345-1366, 2006. https://doi.org/10.3390/s6101345
  6. N. Barsan and U. Weimar, "Conduction model of metal oxide gas sensors", J. Electroceram., Vol. 7, No. 3, pp. 143-167, 2001. https://doi.org/10.1023/A:1014405811371
  7. V. Brynzari, G. Korotchenkov, and S. Dmitriev, "Theoretical study of semiconductor thin film gas sensitivity: Attempt to consistent approach", J. Electron. Technol., Vol. 33, pp. 225-235, 2000.
  8. D.E. Williams, "Semiconducting oxides as gassensitive resistors", Sens. Actuators B, Vol. 57, pp. 1- 16, 1999. https://doi.org/10.1016/S0925-4005(99)00133-1
  9. G. Korotcenkov, "Metal oxides for solid state gas sensors: What determines our choice?", Mater. Sci. Eng. B, Vol. 139, pp. 1-23, 2007. https://doi.org/10.1016/j.mseb.2007.01.044
  10. G. Korotcenkov (ed). Chemical Sensors, Vol. 1-3: Fundamentals of Sensing Materials. Momentum Press, New York, 2010-2011.
  11. G. Korotcenkov, "Practical aspects in design of oneelectrode semiconductor gas sensors: status report", Sens. Actuators B, Vol. 121, pp. 664-678, 2007. https://doi.org/10.1016/j.snb.2006.04.092
  12. G. Korotcenkov and B.K. Cho, "Ozone measuring: What can limit the application of $SnO_{2}$-based gas sensors?", Sens. Actuators B, Vol. 161, pp. 28-44, 2012. https://doi.org/10.1016/j.snb.2011.12.003
  13. J. L. Solis, S. Saukko, L. Kish, C.G. Granqvist, and V. Lantto, "Semiconductor gas sensors based on nanostructured tungsten oxide", Thin Solid Films, Vol. 391, pp. 255-260, 2001. https://doi.org/10.1016/S0040-6090(01)00991-9
  14. U. Hoefer U., J. Frank J., and M. Fleischer, "High temperature $Ga_{2}O_{3}$ gas sensors and $SnO_{2}$ gas sensors: A comparison", Sens. Actuators B, Vol. 78, pp. 6-11, 2001. https://doi.org/10.1016/S0925-4005(01)00784-5
  15. G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, and C. A. Grimes, "A room-temperature $TiO_{2}$-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination", J. Mater. Res., Vol. 19, pp. 628-634, 2004. https://doi.org/10.1557/jmr.2004.19.2.628
  16. A. B. Gadkari, T. J. Shinde, and P. N. Vasambekar, "Ferrite gas sensors", IEEE Sensor J., Vol. 11, No. 4, pp. 849-861, 2011. https://doi.org/10.1109/JSEN.2010.2068285
  17. H. Meixner, U. Lampe, "Metal oxide sensors", Sens. Actuators B, Vol. 33, pp. 198-202, 1999.
  18. J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, and N. Yamazoe, "Dilute hydrogen sulfide sensing properties of CuO-$SnO_{2}$ thin film prepared by low-pressure evaporation method", Sens. Actuators B, Vol. 49, pp. 121-125, 1998. https://doi.org/10.1016/S0925-4005(98)00144-0
  19. G. Korotcenkov and B. K. Cho, "Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement", Sens. Actuators B, Vol. 156, pp. 527-538, 2011. https://doi.org/10.1016/j.snb.2011.02.024
  20. G. Korotcenkov, A. Cornet, E. Rossinyol, J. Arbiol, V. Brinzari, and Y. Blinov, "Faceting characterization of $SnO_{2}$ nanocrystals deposited by spray pyrolysis from $SnCl_{4}-5H_{2}O$ water solution", Thin Solid Films, Vol. 471, pp. 310-319, 2005. https://doi.org/10.1016/j.tsf.2004.06.127
  21. G. Korotcenkov, V. Brinzari, J. R. Stetter, I. Blinov, and V. Blaja, "The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response", Sens. Actuators B, Vol. 128, pp. 51-63, 2007. https://doi.org/10.1016/j.snb.2007.05.028
  22. G. Korotcenkov and B. K. Cho, "Thin film $SnO_{2}$- based gas sensors: Film thickness influence", Sens. Actuators B, Vol. 142, pp. 321-330, 2009. https://doi.org/10.1016/j.snb.2009.08.006
  23. G. Korotcenkov, "Gas response control through structural and chemical modification of metal oxides: State of the art and approaches", Sens. Actuators B, Vol. 107, pp. 209-232, 2005. https://doi.org/10.1016/j.snb.2004.10.006
  24. G. Korotcenkov, "The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors", Mater. Sci. Eng. R., Vol. 61, pp. 1-39, 2008. https://doi.org/10.1016/j.mser.2008.02.001
  25. V. Brinzari, G. Korotcenkov, and V. Golovanov, "Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities for control", Thin Solid Films, Vol. 391/392, pp. 167-175, 2001.
  26. G. Korotcenkov, V. Golovanov, A. Cornet, V. Brinzari, J. Morante, and M. Ivanov, "Distinguishing feature of metal oxide films' structural engineering for gas sensor application", J. Phys.: Confer. Series, Vol. 15, pp. 256-261, 2005. https://doi.org/10.1088/1742-6596/15/1/043
  27. N. Yamazoe, Y. Kurokawa, and T. Seiyama, "Effects of additives on semiconductor gas sensors", Sens. Actuators, Vol. 4, pp. 283-289, 1983. https://doi.org/10.1016/0250-6874(83)85034-3
  28. G. Korotcenkov, S. D. Han, B. K. Cho, and V. Brinzari, "Grain size effects in sensor response of nanostruc-tured $SnO_{2}$- and $In_{2}O_{3}$-based conductometric gas sensor", Crit. Rev. Sol. St. Mater. Sci., Vol. 34, No. 1-2, pp.1-17, 2009. https://doi.org/10.1080/10408430902815725
  29. A. Gurlo, M. Ivanovskaya, N. Barsan, M. Schweizer-Berberich, U. Weimar, W. Gopel, and A. Dieguez, "Grain size control in nanocrystalline $In_{2}O_{3}$ semiconductor sensors", Sens. Actuators B, Vol. 44, pp. 327-333, 1997. https://doi.org/10.1016/S0925-4005(97)00199-8
  30. G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov, V. Golovanov, A. Cornet, J. Morante, A. Cabot, and J. Arbiol, "The influence of film structure on $In_{2}O_{3}$ gas response", Thin Solid Films, Vol. 460, pp. 308-316, 2004.
  31. G. Korotcenkov and B.K. Cho, "The role of the grain size in thermal stability of nanostructured $SnO_{2}$ and $In_{2}O_{3}$ metal oxides films aimed for gas sensor application", Prog. Crystal. Growth, Vol. 58, pp. 167-208, 2012. https://doi.org/10.1016/j.pcrysgrow.2012.07.001
  32. G. Korotcenkov, V. Brinzari, M. Ivanov, A. Cerneavschi, J. Rodriguez, A. Cirera, A. Cornet, and J. Morante, "Structural stability of $In_{2}O_{3}$ films deposited by spray pyrolysis during thermal annealing", Thin Solid Films, Vol. 479, pp. 38-51, 2005. https://doi.org/10.1016/j.tsf.2004.11.107
  33. G. Korotcenkov, V. Brinzari, and I. Boris, "(Cu, Fe, Co or Ni)-doped $SnO_{2}$ films deposited by spray pyrolysis: Doping influence on film morphology", J. Mater. Sci., Vol. 43, No. 8, pp. 2761-2770, 2008. https://doi.org/10.1007/s10853-008-2486-4
  34. G. Korotcenkov and S. D. Han, "(Cu, Fe, Co and Ni)-doped $SnO_{2}$ films deposited by spray pyrolysis: Doping influence on thermal stability of $SnO_{2}$ film structure", Mater. Chem. Phys., Vol. 113, pp. 756- 763, 2009. https://doi.org/10.1016/j.matchemphys.2008.08.031
  35. Z. R. Dai, Z. W. Pan, and Z. L. Wang, "Ultra-long single crystalline nanoribbons of tin oxide", Sol. St. Commun., Vol. 118, pp. 351-354, 2001. https://doi.org/10.1016/S0038-1098(01)00122-3
  36. Z. R. Dai, Z. W. Pan, and Z. L. Wang, "Novel nanostructures of functional oxides ssynthesized by thermal evaporation", Adv. Funct. Mater., Vol. 13, No.1, pp. 9-24, 2003. https://doi.org/10.1002/adfm.200390013
  37. X. L. Ma, Y. Li, and Y. L. Zhu, "Growth mode of the $SnO_{2}$ nanobelts synthesized by rapid oxidation", Chem. Phys. Let., Vol. 376, pp. 794-798, 2003. https://doi.org/10.1016/S0009-2614(03)01081-9
  38. L. Huang, L. Pu, Y. Shi, R. Zhang, B. Gu, Y. Du, and S. Wright, "Controlled growth of well-faceted zigzag tin oxide mesostructures", Appl. Phys. Let., Vol. 87, p. 163124, 2005. https://doi.org/10.1063/1.2112207
  39. M. Law, H. Kind, B. Messer, F. Kim, and P.D. Yang, "Photochemical sensing of $NO_{2}$ with $SnO_{2}$ nanoribbon nanosensors at room temperature", Angew. Chem. Int. Ed., Vol. 41, pp. 2405-2408, 2002. https://doi.org/10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3
  40. J. D. Prades, R. Jimenez-Diaz, F. Hernandez- Ramirez, S. Barth, A. Cirera, A. Romano- Rodriguez, S. Mathur, and J. R. Morante, "Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual $SnO_{2}$ nanowires", Sens. Actuators B, Vol. 140, pp. 337-342, 2009. https://doi.org/10.1016/j.snb.2009.04.070
  41. C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, and C. Zhou, "$In_{2}O_{3}$ nanowires as chemical sensors", Appl. Phys. Lett., Vol. 82, pp. 1613-1615, 2003. https://doi.org/10.1063/1.1559438
  42. D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X.L. Liu, S. Han, B. Lei, and C. W. Zhou, "Detection of $NO_{2}$ down to ppb levels using individual and multiple $In_{2}O_{3}$ nanowire devices", Nano Lett., Vol. 4, pp. 1919-1924, 2004. https://doi.org/10.1021/nl0489283
  43. M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.- W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, "Gas sensing properties of defect-controlled ZnOnanowire gas sensor", Appl. Phys. Lett., Vol. 93, 263103, 2008. https://doi.org/10.1063/1.3046726
  44. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced gas sensing by individual $SnO_{2}$ nanowires and nanobelts functionalized with Pd catalyst particles", Nano Lett., Vol. 5, pp. 667-673, 2005. https://doi.org/10.1021/nl050082v
  45. J. M. Baik, M. H. Kim, C. Larson, C. T. Yavuz, G. D. Stucky, A. M. Wodtke, and M. Moskovits, "Pdsensitized single vanadium oxide nanowires: Highly responsive hydrogen sensing based on the metalinsulator transition", Nano Lett., Vol. 9, pp. 3980- 3984, 2009. https://doi.org/10.1021/nl902020t
  46. C. S. Rout, G. U. Kulkarni, and C. N. R. Rao, "Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides", J. Phys. D, Vol. 40, pp. 2777-2782, 2007. https://doi.org/10.1088/0022-3727/40/9/016
  47. L. H. Qian, K. Wang, Y. Li, H. T. Fang, G. H. Lu, and X. L. Ma, "CO sensor based on Au-decorated $SnO_{2}$ nanobelt", Mater. Chem. Phys., Vol. 10, pp. 82-84, 2006.
  48. Q. Kuang, C. S. Lao, Z. Li, Y. Z. Liu, Z. X. Xie, L. S. Zheng, and Z. L. Wang, "Enhancing the photonand gas-sensing properties of a single $SnO_{2}$ nanowire based nanodevice by nanoparticle surface functionalization", J. Phys. Chem. C, Vol. 112, pp. 11539-11544, 2008. https://doi.org/10.1021/jp802880c
  49. T. Y. Wei, P. H. Yeh, S. Y. Lu, and Z. L. Wang, "Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor", J. Am. Chem. Soc., Vol. 131, pp. 17690-17695, 2009. https://doi.org/10.1021/ja907585c
  50. J. S. Tresback and N. P. Padture, "Low-temperature gas sensing in individual metal-oxide-metal heterojunction nanowires", J. Mater. Res., Vol. 23, pp. 2047-2052, 2008. https://doi.org/10.1557/JMR.2008.0270
  51. L. Liao, H. X. Mai, Q. Yuan, H. B. Lu, J. C. Li, C. Liu, C. H. Yan, Z. X. Shen, and T. Yu, "Single $CeO_{2}$ nanowire gas sensor supported with Pt nanocrystals: Gas sensitivity, surface bond states, and chemical mechanism", J. Phys. Chem. C, Vol. 112, pp. 9061-9065, 2008. https://doi.org/10.1021/jp7117778
  52. V. Kumar S. Sen, K. P. Muthe, N. K. Gaur, S. K. Gupta, and J. V. Yakhmi, "Copper doped $SnO_{2}$ nanowires as highly sensitive $H_{2}S$ gas sensor", Sens. Actuators B, Vol. 138, pp. 587-590, 2009. https://doi.org/10.1016/j.snb.2009.02.053
  53. L. Liao, H. B. Lu, J. C. Li, C. Liu, D. J. Fu, and Y. L. Liu, "The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation", Appl. Phys. Lett., Vol. 91, p. 173110, 2007. https://doi.org/10.1063/1.2800812
  54. Z. M. Zeng, K. Wang, Z. X. Zhang, J. J. Chen, and W. L. Zhou, "The detection of $H_{2}S$ at room by using individual indium oxide nanowire transistors", Nanotechnol., Vol. 20, p. 045503, 2009. https://doi.org/10.1088/0957-4484/20/4/045503
  55. Y. Liu and M. Liu, "Growth of aligned squareshaped $SnO_{2}$ tube arrays", Adv. Mater., Vol. 15, No. 1, pp. 57-62, 2005.
  56. P. Feng, Y. X. Xue, Y. G. Liu, Q. Wan, and T. H. Wang, "Achieving fast oxygen response in individual $\beta-Ga_{2}O_{3}$ nanowires by ultraviolet illumination", Appl. Phys. Lett., Vol. 89, p. 112114, 2006. https://doi.org/10.1063/1.2349278
  57. Z. Lin, W. Song, and H. Yang, "Highly sensitive gas sensor based on coral-like $SnO_{2}$ prepared with hydrothermal treatment", Sens. Actuators B, Vol. 173, pp. 22-27, 2012. https://doi.org/10.1016/j.snb.2012.04.057
  58. J.-H. Lee, "Gas sensors using hierarchical and hollow oxide nanostructures: Overview", Sens. Actuators B, Vol. 140, pp. 319-336, 2009. https://doi.org/10.1016/j.snb.2009.04.026
  59. K. Okuyama, M. Abdullan, I. W. Llenggoro, and F. Iskandar, "Preparation of functional nanostructured particles by spray drying", Adv. Powder Technol., Vol. 17, pp. 587-611, 2006. https://doi.org/10.1163/156855206778917733
  60. P. Colombo, C. Vakifahmetoglu, and S. Costacurta, "Fabrication of ceramic components with hierarchical porosity", J. Mater. Sci., Vol. 45, pp. 5425-5455, 2010. https://doi.org/10.1007/s10853-010-4708-9
  61. M. Hayashi, T. Hyodo, Y. Shimizu, and M. Egashira, "Effects of microstructure of mesoporous $SnO_{2}$ powders on their $H_{2}$ sensing properties", Sens. Actuators B, Vol. 141, pp. 465-470, 2009. https://doi.org/10.1016/j.snb.2009.07.035
  62. A. Rothschild and H. L. Tuller, "Gas sensors: New materials and processing approaches", J Electroceram., Vol. 17, pp. 1005-1012, 2006. https://doi.org/10.1007/s10832-006-6737-y
  63. Y. Wang, A. S. Angelatos, and F. Caruso, "Template synthesis of nanostructured materials via layer-by-layer assembly", Chem. Mater., Vol. 20, pp. 848-858, 2008. https://doi.org/10.1021/cm7024813
  64. T. L. Wadea and J.-E. Wegrowe, "Template synthesis of nanomaterials", Eur. Phys. J., Appl. Phys., Vol. 29, pp. 3-22, 2005.
  65. W. Yue and W. Zhou, "Crystalline mesoporous metal oxide", Prog. Nat. Sci., Vol. 18, pp. 1329- 1338, 2008. https://doi.org/10.1016/j.pnsc.2008.05.010
  66. C. Sanchez, C. Boissière, D. Grosso, C. Laberty, and L. Nicole, "Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity", Chem. Mater., Vol. 20, pp. 682-737, 2008. https://doi.org/10.1021/cm702100t
  67. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, and C.A. Grimes, "Hydrogen sensing using titania nanotubes", Sens. Actuators B, Vol. 93, pp. 338- 344, 2003. https://doi.org/10.1016/S0925-4005(03)00222-3
  68. Y. Li, X. Yu, and Q. Yang, "Fabrication of $TiO_{2}$ nanotube thin films and their gas sensing properties", J. Sensors, Vol. 2009, 402174, 2009.
  69. S. Rani, S. C. Roy, M. Paulose, O. K. Varghese, G. K. Mor, S. Kim, S. Yoriya, T. J. LaTempa, and C. A. Grimes, "Synthesis and applications of electrochemically self-assembled titania nanotube arrays", Phys. Chem. Chem. Phys., Vol. 12, pp. 2780-2800, 2010. https://doi.org/10.1039/b924125f
  70. J.-H. Jeun and S.-H. Hong, "CuO-loaded nanoporous SnO2 films fabricated by anodic oxidation and RIE process and their gas sensing properties", Sens. Actuators B, Vol. 151, pp. 1-7, 2010. https://doi.org/10.1016/j.snb.2010.10.002
  71. M. Tiemann, "Porous metal oxides as gas sensors", Chem. Eur. J., Vol. 13, pp. 8376-8388, 2007. https://doi.org/10.1002/chem.200700927
  72. Y. Shimizu, Y. Hyodo, and M. Egashira, "Mesoporous semiconducting oxides for gas sensor application", J. Eur. Ceram. Soc., Vol. 24, pp. 1389- 1398, 2004. https://doi.org/10.1016/S0955-2219(03)00511-9
  73. Y. Shimizu, A. Jono, T. Hyodo, and M. Egashira, "Preparation of large mesoporous $SnO_{2}$ powders for gas sensor application", Sens. Actuators B, Vol. 108, pp. 56-61, 2005. https://doi.org/10.1016/j.snb.2004.10.047
  74. G. S. Devi, T. Hyodo, Y. Shimizu, and M. Egashira, "Synthesis of mesoporous $TiO_{2}$-based powders and their gas-sensing properties", Sens. Actuators B, Vol. 87, pp. 122-129, 2002. https://doi.org/10.1016/S0925-4005(02)00228-9
  75. T. Hyodo, Y. Shimizu, and M. Egashira, "Gassensing properties of ordered mesoporous $SnO_{2}$ and effects of coating thereof", Sens. Actuators B, Vol. 93, pp. 590-600, 2003. https://doi.org/10.1016/S0925-4005(03)00208-9
  76. T. Wagner, T. Waitz, J. Roggenbuck, M. Froeba, C.-D. Kohl, and M. Tiemann, "Ordered mesoporous ZnO for gas sensing", Thin Solid Films, Vol. 515, pp. 8360-8363, 2007. https://doi.org/10.1016/j.tsf.2007.03.021
  77. Q. Liu, W.-M. Zhang, Z.-M. Cui, B. Zhang, L.-J. Wan, and W.-G. Song, "Aqueous route for mesoporous metal oxides using inorganic metal source and their applications", Micropor. Mesopor. Mater., Vol. 100, pp. 233-240, 2007. https://doi.org/10.1016/j.micromeso.2006.10.041
  78. K. Choi, H. R. Kim, and J. H. Lee, "Enhanced CO sensing characteristics of hierarchical and hollow $In_{2}O_{3}$ microspheres", Sens. Actuators B, Vol. 138, 4 pp. 97-503, 2009.
  79. E. Rossinyol, A. Prim, E. Pellicer, J. Rodriguez, F. Peiry, A. Cornet, J. R. Morante, B. Tian, T. Bo, and D. Zhao, "Mesostructured pure and coppercatalyzed tungsten oxide for $NO_{2}$ detection", Sens. Actuators B, Vol. 126, pp. 18-23, 2007. https://doi.org/10.1016/j.snb.2006.10.017
  80. E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernandez-Ramirez, F. Peiry, A. Cornet, J.R. Morante, L.A. Solovyov, B. Tian., T. Bo, and D. Zhao, "Synthesis and characterization of chromiumdoped mesoporous tungsten oxide for gas sensing applications", Adv. Funct. Mater., Vol. 17, pp. 1801-1806, 2007. https://doi.org/10.1002/adfm.200600722
  81. L. He, Y. Jia, F. Meng, M. Li, and J. Liu, "Development of sensors based on CuO-doped $SnO_{2}$ hollow spheres for ppb level $H_{2}S$ gas sensing", J. Mater. Sci., Vol. 44, pp. 4326-4333, 2009. https://doi.org/10.1007/s10853-009-3645-y
  82. T. Hyodo, N. Nishida, Y. Shimizu, and M. Egashira, "Preparation and gas-sensing properties of thermally stable mesoporous $SnO_{2}$", Sens. Actuators B, Vol. 83, pp. 209-215, 2002. https://doi.org/10.1016/S0925-4005(01)01042-5
  83. C. Shao, H. Kim, J. Gong, and D. Lee, "A novel method for making silica nanofibers by using electrospun fibers of polyvinyl alcohol/silica composite as precursor", Nanotechnology, Vol. 13, 635-637, 2002. https://doi.org/10.1088/0957-4484/13/5/319
  84. Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, "Electrochemically induced sol-gel sreparation of single-crystalline $TiO_{2}$ nanowires", Nano Lett., Vol. 2, pp. 717-720, 2002. https://doi.org/10.1021/nl025541w
  85. B. Ding, C. Kim, H. Kim, M. Seo, and S. Park, "Titanium dioxide nanofibers prepared by using electrospinning method", Fiber. Polym., Vol. 5, pp. 105-109, 2004. https://doi.org/10.1007/BF02902922
  86. I. Raible, M. Burghard, U. Schlecht, A. Yasuda, and T. Vossever, "$V_{2}O_{5}$ nanofibers: Novel gas sensors with extremely high sensitivity and selectivity to amines", Sens. Actuators B, Vol. 106, pp. 730-735, 2005. https://doi.org/10.1016/j.snb.2004.09.024
  87. R. Luoh and H.T. Hahn, "Electrospun nanocomposite fiber mats as gas sensors", Composites. Sci. Technol., Vol. 66, pp. 2436-2441, 2006. https://doi.org/10.1016/j.compscitech.2006.03.012
  88. S. K. Lim, S. H. Hwang, D. Chang, and S. Kim, "Preparation of mesoporous $In_{2}O_{3}$ nanofibers by electrospinning and their application as a CO gas sensor", Sens. Actuators B, Vol. 149, pp. 28-33, 2010. https://doi.org/10.1016/j.snb.2010.06.039
  89. J.-A. Park, J. Moon, S.-J. Lee, S. H. Kim, T. Zyung, and H.Y. Chu, "Structure and CO gas sensing properties of electrospun $TiO_{2}$ nanofibers", Mater. Lett., Vol. 64, pp. 255-257, 2010. https://doi.org/10.1016/j.matlet.2009.10.052
  90. I. Kim, A. Rothschild, B. Lee, D. Kim, S. Jo, and H. Tuller, "Ultrasensitive chemiresistors based on electrospun $TiO_{2}$ nanofibers", Nano Lett., Vol. 6, pp. 2009-2013, 2006. https://doi.org/10.1021/nl061197h
  91. Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang, "Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun $SnO_{2}$ nanofibers", Sens. Actuators B, Vol. 132, pp. 67-73, 2008. https://doi.org/10.1016/j.snb.2008.01.006
  92. O. Landau, A. Rothschild, and E. Zussman, "Processing-microstructure-properties correlation of ultrasensitive gas sensors produced by electrospinning", Chem. Mater., Vol. 21, pp. 9-11, 2009. https://doi.org/10.1021/cm802498c
  93. A. Yang, X. Tao, and R. Wang, "Room temperature gas sensing properties of $SnO_{2}$/multiwallcarbonnanotube composite nanofibers", Appl. Phys. Lett., Vol. 91, p. 133110, 2007. https://doi.org/10.1063/1.2783479
  94. Y. Wang, I. Ramos, and J. Santiago-Aviles, "Detection of moisture and methanol gas using a single electrospun tin oxide nanofiber", IEEE Sensors J., Vol. 7, pp. 1347-1348, 2007. https://doi.org/10.1109/JSEN.2007.905045
  95. G. Wang, Y. Ji, X. Huang, X. Yang, P. Gouma, and M. Dudley, "Fabrication and characterization of polycrystalline $WO_{3}$ nanofibers and their application for ammonia sensing". J. Phys. Chem. B, Vol. 110, pp. 23777-23782, 2006. https://doi.org/10.1021/jp0635819
  96. Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. MacDiarmid, and Y. Wei, "Highly sensitive and stable humidity nanosensors based on LiCl doped $TiO_{2}$ electrospun nanofibers", J. Am. Chem. Soc., Vol. 130, pp. 5036-5037, 2008. https://doi.org/10.1021/ja800176s
  97. M. Yang, T. Xie, L. Peng, Y. Zhao, and D. Wang, "Fabrication and photoelectric oxygen sensing characteristics of electrospun Co doped ZnO nanofibers", Appl. Phys. A-Mat. Sci. Process., Vol. 89, pp. 427-430, 2007. https://doi.org/10.1007/s00339-007-4204-5
  98. K. Sahner, P. Gouma, and R. Moos, "Electrodeposited and sol-gel precipitated p-type $SrTi_{1-x}Fe_{x}O_{3-\delta}$ semiconductors for gas sensing", Sensors, Vol. 7, pp. 1871-1886, 2007. https://doi.org/10.3390/s7091871
  99. G. Wang, Y. Ji, X. Huang, X. Yang, P. Gouma, and M. Dudley, "Fabrication and characterization of polycrystalline $WO_{3}$ nanofibers and their application for ammonia sensing", J. Phys. Chem. B, Vol. 110, pp. 23777-23782, 2006. https://doi.org/10.1021/jp0635819
  100. N. M. Vuong, H. Jung, D. Kim, H. Kim, and S.-K. Hong, "Realization of an open space ensemble for nanowires: a strategy for the maximum response in resistive sensors", J. Mater. Chem., Vol. 22, pp. 6716-6725, 2012. https://doi.org/10.1039/c2jm15971f

Cited by

  1. Metal Oxides for Application in Conductometric Gas Sensors: How to Choose? vol.266, 2017, https://doi.org/10.4028/www.scientific.net/SSP.266.187
  2. Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet vol.116, pp.19, 2016, https://doi.org/10.1021/acs.chemrev.6b00187
  3. Study of nanocomposite thick-film butanol vapor sensors vol.51, pp.2, 2016, https://doi.org/10.3103/S1068337216020067
  4. In2O3- and SnO2-based Ozone Sensors: Design and Characterization 2017, https://doi.org/10.1080/10408436.2017.1287661
  5. Preparation of CuO-Ta<SUB>2</SUB>O<SUB>5</SUB> Composites Using a Simple Co-Sputtering Method vol.03, pp.09, 2015, https://doi.org/10.4236/msce.2015.39006
  6. In2O3- and SnO2-Based Thin Film Ozone Sensors: Fundamentals vol.2016, 2016, https://doi.org/10.1155/2016/3816094
  7. Spray pyrolysis deposition of undoped SnO2 and In2O3 films and their structural properties vol.63, pp.1, 2017, https://doi.org/10.1016/j.pcrysgrow.2016.12.001
  8. Anodic Oxidation Synthesis of One-Dimensional TiO2Nanostructures for Photocatalytic and Field Emission Properties vol.2014, 2014, https://doi.org/10.1155/2014/831752
  9. Nanocomposite sensors of propylene glycol, dimethylformamide and formaldehyde vapors vol.7, pp.1, 2018, https://doi.org/10.5194/jsss-7-31-2018
  10. Electrospun Nanostructures for High Performance Chemiresistive and Optical Sensors vol.302, pp.8, 2017, https://doi.org/10.1002/mame.201600569
  11. Chemiresistive Sensor Array Based on Semiconducting Metal Oxides for Environmental Monitoring vol.23, pp.1, 2014, https://doi.org/10.5369/JSST.2014.23.1.15
  12. Hybrid layer-by-layer (LbL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia vol.238, 2017, https://doi.org/10.1016/j.snb.2016.07.099
  13. A first-principles study of chlorine adsorption characteristics on α-Cr2O3 nanostructures vol.127, pp.10, 2015, https://doi.org/10.1007/s12039-015-0940-9