References
- Andersen, T. G. and Bollerslev, T. (1998). Answering the skeptics: yes, standard volatility models do provide accurate forecasts, International Economic Review, 39, 885-905. https://doi.org/10.2307/2527343
- Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P. (2001). The distribution of realized exchange rate volatility, Journal of the American Statistical Association, 96, 42-55. https://doi.org/10.1198/016214501750332965
- Baillie, R. T. and Bollerslev, T. (1992). Prediction in dynamic models with time-dependent conditional variances, Journal of Econometrics, 52, 91-113. https://doi.org/10.1016/0304-4076(92)90066-Z
- Bougerol, P. and Picard, N. (1992a). Strict stationarity of generalized autoregressive processes, Annals of Probability, 20, 1714-1730. https://doi.org/10.1214/aop/1176989526
- Bougerol, P. and Picard, N. (1992b). Stationarity of GARCH processes and of some nonnegative time series, Journal of Econometrics, 52, 115-127. https://doi.org/10.1016/0304-4076(92)90067-2
- Chen, B., Gel, Y. R., Balakrishna, N. and Abraham, B. (2011). Computationally efficient bootstrap prediction intervals for returns and volatilities in ARCH and GARCH processes, Journal of Forecasting, 30, 51-71. https://doi.org/10.1002/for.1197
- Engle, R. F. and Patton, A. J. (2001). What good is a volatility model?, Quantitative Finance, 1, 237-245. https://doi.org/10.1088/1469-7688/1/2/305
- Hwang, E. and Shin, D.W. (2011). Stationary bootstrapping for non-parametric estimator of nonlinear autoregressive model, Journal of Time Series Analysis, 32, 292-303. https://doi.org/10.1111/j.1467-9892.2010.00699.x
-
Hwang, E. and Shin, D. W. (2012a). Stationary bootstrap for kernel density estimators under
$\psi$ -weak dependence, Computational Statistics and Data Analysis, 56, 1581-1593. https://doi.org/10.1016/j.csda.2011.10.001 -
Hwang, E. and Shin, D. W. (2012b). Strong consistency of the stationary bootstrap under
$\psi$ -weak dependence, Statistics and Probability Letters, 82, 488-495. https://doi.org/10.1016/j.spl.2011.12.001 - Kavalieris, L., Hannan, E. J. and Salau, M. (2003). Generalized least squares estimation of ARMA models, Journal of Time Series Analysis, 24, 165-172. https://doi.org/10.1111/1467-9892.00301
- Koreisha, S. and Pukkila, T. (1990). A generalized least-squares approach for estimation of autoregressive moving-average models, Journal of Time Series Analysis, 11, 139-151. https://doi.org/10.1111/j.1467-9892.1990.tb00047.x
- Lahiri, S. N. (1999). On second-order properties of the stationary bootstrap method for studentized statistics, In Asymptotic, Nonparametrics, and Time Series. (Eds. Ghosh, S.), Marcel Dekker, New York, 683-711.
- Miguel, J. A. and Olave, P. (1999). Bootstrapping forecast intervals in ARCH models, Test, 8, 345-364. https://doi.org/10.1007/BF02595875
- Nordman, D. J. (2009). A note on the stationary bootstrap's variance, Annals of Statistics, 37, 359-370. https://doi.org/10.1214/07-AOS567
- Paparoditis, E. and Politis, D. N. (2005). Bootstrapping unit root tests for autoregressive time series, Journal of the American Statistical Association, 100, 545-553. https://doi.org/10.1198/016214504000001998
- Parker, C., Paparoditis, E. and Politis, D. N. (2006). Unit root testing via the stationary bootstrap, Journal of Econometrics, 133, 601-638. https://doi.org/10.1016/j.jeconom.2005.06.008
- Pascual, L., Romo, J. and Ruiz, E. (2006). Bootstrap prediction for returns and volatilities in GARCH models, Computational Statistics and Data Analysis, 50, 2293-2312. https://doi.org/10.1016/j.csda.2004.12.008
- Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap, Journal of the American Statistical Association, 89, 1303-1313. https://doi.org/10.1080/01621459.1994.10476870
- Reeves, J. J. (2005). Bootstrap prediction intervals for ARCH models, Internal Journal of Forecasting, 21, 237-248. https://doi.org/10.1016/j.ijforecast.2004.09.005
- Swensen, A. R. (2003). Bootstrapping unit root tests for integrated processes, Journal of Time Series Analysis, 24, 99-126. https://doi.org/10.1111/1467-9892.00295
- Thombs, L. A. and Schucany,W. R. (1990). Bootstrap prediction intervals for autoregression, Journal of the American Statistical Association, 95, 486-492.
Cited by
- Exploratory Data Analysis for Korean Stock Data with Recurrence Plots vol.26, pp.5, 2013, https://doi.org/10.5351/KJAS.2013.26.5.807