DOI QR코드

DOI QR Code

Ethanol Extract of Astragalus membranaceus Bunge Induces Aquaporin-3 Expression in HaCaT Cells

HaCaT Cell에서 황기 에탄올 추출물의 Aquaporin-3 발현 효과

  • Park, Hyun-Chul (Saimdang Cosmetics Co., Ltd., R&D Center) ;
  • Kim, Hee-Taek (Dept. of Oriental Medical Opthalmology & Otolaryngology & Dermatology, Semyung University Oriental Medical Hospital) ;
  • Ha, Hun-Young (Dept. of Natural Medicine Resources, Semyung University) ;
  • Lee, Pyeong-Jae (Dept. of Natural Medicine Resources, Semyung University) ;
  • Yoon, Kyung-Sup (Saimdang Cosmetics Co., Ltd., R&D Center)
  • 박현철 ((주)사임당화장품 기술연구소) ;
  • 김희택 (세명대학교 한의과대학 안이비인후피부과학교실) ;
  • 하헌용 (세명대학교 자연약재과학과) ;
  • 이평재 (세명대학교 자연약재과학과) ;
  • 윤경섭 ((주)사임당화장품 기술연구소)
  • Received : 2013.08.07
  • Accepted : 2013.11.11
  • Published : 2013.12.30

Abstract

Astragalus membranaceus Bunge is used in herbal medicine in Eastern Asian countries including Korea. In this study, we assessed the effects of A. membranaceus extract (AM) on the aquaporin-3 (AQP3) protein expression in HaCaT cells. AM did not affect viability of HaCaT cells. AQP3 expression and cell migration seem to be maximal at $100{\mu}g/mL$ concentration. Epidermal growth factor receptor (EGFR) kinase inhibitor, PD153035, blocked AM-induced AQP3 expression and cell migration. In addition, an 80% ethanol extracts of herbal prescription, SinhyoTakleesan (ST), which is composed of A. membranaceus, Angelicae gigantis, Glycyrrhiza glabra Linne, and Lonicera japonica Flos also induced AQP3 expression at $20{\mu}g/mL$ in HaCaT cells. Collectively, these results suggest that AM induce AQP3 expression via EGFR pathway.

Keywords

References

  1. Agre, P., L. S. King, M. Yasui, W. B. Guggino, O. P. Ottersen, Y. Fujiyoshi, A. Engel, and S. Nielsen (2002) Aquaporin water channels-from atomic structure to clinical medicine. J. Physiol. 542: 3-16. https://doi.org/10.1113/jphysiol.2002.020818
  2. Rojek, A., J. Praetorius, J. Frokiaer, S. Nielsen, and R. A. Fenton (2008) A current view of the mammalian aquaglyceroporins. Ann. Rev. Physiol. 70: 301-327. https://doi.org/10.1146/annurev.physiol.70.113006.100452
  3. Verkman, A. S., B. Yang, Y. Song, G. T. Manley, and T. Ma (2000) Role of water channels in fluid transport studied by phenotype analysis of aquaporin knockout mice. Exp. Physiol. 85: 233-241. https://doi.org/10.1111/j.1469-445X.2000.tb00028.x
  4. Verkman, A. S. (2006) Roles of aquaporins in kidney revealed by transgenic mice. Semin. Nephrol. 26: 200-208. https://doi.org/10.1016/j.semnephrol.2006.02.002
  5. Manley G. T., M. Fujimura, T. Ma, N. Noshita, F. Filiz, A. W. Bollen, P. Chan, and A. S. Verkman (2000) Aquaporin-4 deletion in mice recduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6: 159-163. https://doi.org/10.1038/72256
  6. Saadoun, S., M. C. Papadopoulos, M. Hara-Chikuma, and A. S. Verkman (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434: 786-792. https://doi.org/10.1038/nature03460
  7. Verkman, A. S. (2008) Mammalian aquaporins: diverse physiological roles and potential clinical significance. Expert. Rev. Mol. Med. 10: 1-18. https://doi.org/10.1017/S1462399408000550
  8. Verkman, A. S., M. Hara-Chikuma, and M. C. Papadopoulos (2008) Aquaporins-new players in cancer biology. J. Mol. Med. 86: 523-529. https://doi.org/10.1007/s00109-008-0303-9
  9. Hara-Chikuma, M., E. Sohara, T. Rai, M. Ikawa, M. Okabe, S. Sasaki, S. Uchida, and A. S. Verkman (2005) Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permaeability as a novel regulator of fat accumulation. J. Biol. Chem. 280: 15493-15496. https://doi.org/10.1074/jbc.C500028200
  10. Ishibashi, K., S. Sasaki, K. Fushimi, S. Uchida, M. Kuwahara, H. Saito, T. Furukawa, K. Nakajima, Y. Yamaguchi, and T. Gojobori (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cell. Proc. Natl. Acad. Sci. USA 91: 6269-6273. https://doi.org/10.1073/pnas.91.14.6269
  11. Echevarria, M., E. E. Windhager, S. S. Tate, and G. Frindt (1994) Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc. Natl. Acad. Sci. USA 91: 10997-11001. https://doi.org/10.1073/pnas.91.23.10997
  12. Nielsen, S., L. S. King, B. M. Christensen, and P. Agre (1999) Aquaporins in complex tissues. II. Subcellular distribution in respiratory and glandular tissues of rat. Am. J. Physiol. 273: 1549-1561.
  13. Ma, T. and A. S. Verkman (1999) Aquaporin water channels in gastrointestinal physiology. J. Physiol. 517: 317-326. https://doi.org/10.1111/j.1469-7793.1999.0317t.x
  14. Spectro, D. A., J. B. Wade, R. Dillow, D. A. Steplock, and E. J. Weinman (2002) Expression, localization, and regulation of aquaporin-1 to -3 in rat urothelia. Am. J. Physiol. Renal. Physiol. 282: 1034-1042. https://doi.org/10.1152/ajprenal.00136.2001
  15. Verkman, A. S. (2003) Role of aquaporin water channels in eye function. Exp. Eye Res. 76: 137-143. https://doi.org/10.1016/S0014-4835(02)00303-2
  16. Verkman, A. S. (2005) More than just water channels: unexpected cellular roles of aquaporins. J. Cell Sci. 118: 3225-3232. https://doi.org/10.1242/jcs.02519
  17. Hara-Chikuma, M. and A. S. Verkman (2005) Aquaporin-3 function as a glycerol transporter in mammalian skin. Biol. Cell 97: 479-486. https://doi.org/10.1042/BC20040104
  18. Ma, T., Y. Song, B. Yang, A. Gillespie, E. J. Carlson, C. J. Epstein, and A. S. Verkman (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Pro. Natl. Acad. Sci. USA 97: 4386-4391. https://doi.org/10.1073/pnas.080499597
  19. Combet, S., M. Van Landschoot, P. Moulin, A. Piech, J. M. Verbavatz, E. Goffin, J. L. Balligand, N. Lameire, and O. Devuyst (1999) Regulation of aquaporin-1 and nitric oxide synthase isoforms in a rat model of acute peritonitis. J. Am. Soc. Nephrol. 10: 2185-2196.
  20. Hara, M., T. Ma, and A. S. Verkman (2002) Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J. Biol. Chem. 277: 46616-46621. https://doi.org/10.1074/jbc.M209003200
  21. Hara-Chikuma, M. and A. S. Verkman (2008) Roles of aquaporin-3 in the epidermis. J. Invest. Dermatol. 128: 2145-2151. https://doi.org/10.1038/jid.2008.70
  22. Cao, C., Y. Sun, S. Healey, B. zhigng, W. Shu, K. Nicola, C. Wenming and W. Yinsheng (2006) EGFR-mediated expression of aquaporin-3 is involved in human skin fibroblast migration. Biochem. J. 400: 225-234. https://doi.org/10.1042/BJ20060816
  23. Sin. J. M. (1988) Bangyak Habpyeon explanation pp. 81 Sung Bo Sa. Kor.
  24. Jin Sa mun (1975) Prescriptions of the Bureau of Taiping Peoples Welfare pp. 11. Pharmacy Sunpung Press. Taipei.
  25. Hirotani, M., Y. Zhou, H. Rui, and T. Furuya (1994) Cycloartane triterpene glycosides from the hairy root cultures of astragalus mongholicus. Phytochemistry 37: 1403-1407. https://doi.org/10.1016/S0031-9422(00)90420-5
  26. Zhou, Y., M. Hirotani, H. Rui, and T. Furuya (1995) Two Triglycosidic Triterpene Astragalosides from the Hairy Root Cultures of Astragalus mongholicus. Phytochemistry 38: 1407-1410. https://doi.org/10.1016/0031-9422(94)00833-F
  27. Kitagawa, I., H. K. Wang, M. Saito, and M. Yoshikawa (1983) Saponin and sapogenol. XXXVI. chemical constituents of astragali radix, the Root of astragalus membranaceus Bunge (3). astragalosides III, V, and VI. Chem. Pharm. Bull. 31: 709-715. https://doi.org/10.1248/cpb.31.709
  28. Kitagawa, I, H. K. Wang, M. Yoshikawa (1983) Saponin and sapogenol. XXXVII. chemical constituents of astragali radix, the root of astragalus membranaceus bunge (4). astragalosides VII and VII. Chem Pharm Bull. 31: 716-722. https://doi.org/10.1248/cpb.31.716
  29. Jung, T. K., Kim, M. J., Lim, K. R., and K. S. Yoon (2006) Moisturing and anti-oxidation effect of astragalus membranaceus. J. Soc. Cosmet. Scientists Korea 32: 193-200.
  30. Mosmann, T. (1983) Rapid colorimetric assay for the cellular growth and survival: application to proliferation and cytotoxic assay. J. Immun. Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  31. Shan, S. J., Xiao, T., Chen, J., Geng, S. L., Li, C. P., Xu, X., Hong, Y., Ji, C., Guo, Y., Wei, H., Liu, W., Li, D., and H. D. Chen (2012) Kanglaite attenuates UVB-induced down-regulation of aquaporin- 3 in cultured human skin keratinocytes. Int. J. Mol. Med. 29: 625-629. https://doi.org/10.3892/ijmm.2011.873
  32. Levin, M. H. and A. S. Verkman (2006) Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest. Ophthalmol. Vis. Sci. 47: 4365-4372. https://doi.org/10.1167/iovs.06-0335
  33. Huh, J. E., Nam, D. W., Bae, Y. H., Kang, J. W., Park, D. S., Choi, D. Y., and J. D. Lee (2011) Formononetin accelerates wound repair by the regulation of early growth response factor-1 transcription factor through the phosphorylation of the ERK and p38 MAPK pathways. Int. Immunopharmacol. 11: 46-54. https://doi.org/10.1016/j.intimp.2010.10.003