DOI QR코드

DOI QR Code

여러개의 단순 선형 회귀모형에서 순차기울기를 이용한 평행성 검정

Parallelism Test of Slope in a Several Simple Linear Regression Model based on a Sequential Slope

  • 김주희 (가톨릭대학교 의학통계학과) ;
  • 김동재 (가톨릭대학교 의학통계학과)
  • Kim, Juhie (Department of Biostatistics, The Catholic University of Korea) ;
  • Kim, Dongjae (Department of Biostatistics, The Catholic University of Korea)
  • 투고 : 2013.10.14
  • 심사 : 2013.11.11
  • 발행 : 2013.12.31

초록

회귀분석은 변수들간의 관계를 파악하는데 유용하게 사용된다. 여러개의 모집단을 비교할 때, 여러 모집단이 갖는 각각의 회귀직선의 기울기가 같은지 검정하는 것이 필요할 때가 있다. 본 논문에서는 순차기울기를 추정한 후 ANOVA의 F-검정법과 Kruskal-Wallis (1952)검정법을 이용한 방법을 각각 제안하였다. 또한, 몬테카를로 모의시험 연구를 통해 본 논문에서 제안한 두 가지 방법과 Park과 Kim (2009)이 제안한 기존 방법의 검정력을 비교하였다.

Regression analysis is useful to understand the relationship of variables; however, we need to test if the slope of each regression lines is the same when comparing several populations. This paper suggests a new parallelism test for several linear regression lines. We use F-test of ANOVA and Kruskal-Wallis (1952) tests after obtaining slope estimator from a sequential slope. In addition, a Monte Carlo simulation study is adapted to compare the power of the proposed methods with those of Park and Kim (2009).

키워드

참고문헌

  1. Adichie, J. N. (1984). Rank test in linear modelsm In P.R. Krishnaiah and P.K.Sen (eds), Handbook of Statistics, 4, 229-257
  2. Hollander, M. (1970). A distribution-free test for parallelism, Journal of the American Statistical Association, 65, 387-394. https://doi.org/10.1080/01621459.1970.10481087
  3. Kruskal, W. H. and Wallis, W. A. (1952). Use of rank in one-criterion variance analysis, Journal of the American Statistical Association, 47, 583-621. https://doi.org/10.1080/01621459.1952.10483441
  4. Orban, J. and Wolfe, D. A. (1982). Class of Distribution-Free Two-Sample Tests Based on Placements, Journal of the American Statistical Association 1982, 77, 666-672.
  5. Park, H. W. and Kim, D. (2009). Parallelism test of slope in simple linear regression models, Journal of the Korean Statistical Society, 16, 75-83. https://doi.org/10.5351/CKSS.2009.16.1.075
  6. Sen, P. K. (1969). On a class of rank order tests for the parallelism of several regression lines, The Annals of Mathematical Statistics, 40, 1668-1683. https://doi.org/10.1214/aoms/1177697381
  7. Son, D. S. (2002). A Nonparametric Parrallelism Test in Simple Linear Regression Model Based on Sequential Slope, The Catholic University of Korea.
  8. Tukey, J. W. (1953). The Problem of Multiple Comparisons, Unpublished manuscript.