DOI QR코드

DOI QR Code

Prediction of the Number of Food Poisoning Occurrences by Microbes

원인균별 식중독 발생 건수 예측

  • Yeo, In-Kwon (Department of Statistics, Sookmyung Women's University)
  • Received : 2013.08.19
  • Accepted : 2013.10.28
  • Published : 2013.12.31

Abstract

This paper proposes a method to predict the number of foodborne disease outbreaks by microbes. The weekly data of food poisoning occurrences by microbes in Korea contain many zero-valued observations and have dependency between outbreaks. In order to model both phenomena, the number of food poisonings is predicted by an autoregressive model and the probabilities of food poisoning occurrences by microbes (given the total of food poisonings) are estimated by the baseline category logit model. The predicted number of foodborne disease outbreaks by a microbe is obtained by multiplying the predicted number of foodborne disease outbreaks and the estimated probability of the food poisoning by the corresponding microbe. The mean squared error and the mean absolute value error are evaluated to compare the performances of the proposed method and the zero-inflated model.

이 논문에서는 우리나라에서 발생하는 원인균별 식중독 발생건수를 예측하는 방법을 제안한다. 우리나라에서 보고되는 주별 식중독 발생 건수를 원인균로 나누면 자료에 많은 0의 관측값이 포함되어 있으며 식중독 발생 간에 종속성을 가진다. 이 현상을 모형화하기 위해 이 논문에서는 전체 식중독 건수를 자기회귀모형으로 예측하고 원인균별 식중독 발생 확률을 다범주 로짓모형으로 추정한다. 예측된 식중독 건수와 추정된 원인균별 식중독 발생 확률을 곱하여 원인균별 식중독 발생건수를 예측한다. 제안된 방법의 타당성을 확인하기 위해 평균제곱오차와 평균절대편차를 이용하여 제안 방법과 영과잉모형을 비교해 본다.

Keywords

References

  1. Bentham, G. and Langfod, I. H. (1995). Climate change and the incidence of food poisoning in England Wales, International Journal of Biometeorology, 39, 81-96. https://doi.org/10.1007/BF01212585
  2. Choi, K., Kim, B., Bae, W., Jung, W. and Cho, Y. (2008). Developing the index of foodborne disease occurrence, The Korean Journal of Applied Statistics, 21, 649-658. https://doi.org/10.5351/KJAS.2008.21.4.649
  3. Fleury, M. Charron, D. F., Holt, J. D., Allen, O. D. and Maarouf, A. R. (2006). A time series analysis of the relationship of ambient temperature and common bacterial enteric infections in two Canadian provinces, International Journal of Biometeorology, 50, 385-391. https://doi.org/10.1007/s00484-006-0028-9
  4. Jung, H. S., Kim, B. J., Cho, S. and Yeo, I. K. (2012). Analysis of food poisoning via zero inflation models, The Korean Journal of Applied Statistics, 25, 859-864. https://doi.org/10.5351/KJAS.2012.25.5.859
  5. Lambert, D. (1992). Zero-inflated Poisson regression models with an application to defects in manufacturing, Technometrics, 34, 1-14. https://doi.org/10.2307/1269547
  6. Magny, G. C., Murtugudde, R., Sapiano, M. R. P and Colwell, R. R (2008). A environmental signatures associated with cholera epidemics, Proceedings of the National Academy of Sciences of the United States of America, 105, 17676-17681. https://doi.org/10.1073/pnas.0809654105
  7. Miller, J. M. (2007). Comparing Poisson, Hurdle, and ZIP model fit under varying degrees of skew and zero-ination, University of Florida, DAI-A 68/06, Dec 2007.
  8. Patrick, M. E., Christiansen, L. E., Steen Ethelberg, M. W., Madsen, H. and Wegener, H. C. (2004). Effects of climate on incidence of Camphylobacter spp. in humans and prevalence in broiler flocks in Denmark, Applied and Environmental Microbiology, 70, 7474-7480. https://doi.org/10.1128/AEM.70.12.7474-7480.2004
  9. SAS Institute Inc. (2008). SAS/ETS User's Guide (Version 9.2, Chap.10, The COUNTREG Procedure), SAS Institute Inc., Cary, NC, USA.
  10. Yeo, I. K. (2012). Models for forecasting food poisoning occurrences, Journal of the Korean Data & Information Science Society, 23, 1117-1125. https://doi.org/10.7465/jkdi.2012.23.6.1117