DOI QR코드

DOI QR Code

커널 제약식을 이용한 다중 비교차 분위수 함수의 순차적 추정법

Stepwise Estimation for Multiple Non-Crossing Quantile Regression using Kernel Constraints

  • 투고 : 2013.07.30
  • 심사 : 2013.10.25
  • 발행 : 2013.12.31

초록

분위수 회귀는 반응변수의 조건부 분위수 함수를 추정함으로써 반응변수와 예측변수의 관계에 대한 포괄적인 정보를 제공한다. 그러나 여러 개의 분위수 함수를 개별적으로 추정하게 되면 이들이 서로 교차할 가능성이 있으며, 이러한 분위수 함수의 교차(quantile crossing) 현상 분위수의 이론적 기본 특성에 위배된다. 본 논문에서는 다중 비교차 분위수 함수의 추정을 위해 커널 계수에 제약식을 부여하는 순차적 추정법을 제안하였으며, 모의실험을 통해 제안한 방법론의 효율적인 성능과 유용성을 확인하였다.

Quantile regression can estimate multiple conditional quantile functions of the response, and as a result, it provide comprehensive information of the relationship between the response and the predictors. However, when estimating several conditional quantile functions separately, two or more estimated quantile functions may cross or overlap and consequently violate the basic properties of quantiles. In this paper, we propose a new stepwise method to estimate multiple non-crossing quantile functions using constraints on the kernel coefficients. A simulation study are presented to demonstrate satisfactory performance of the proposed method.

키워드

참고문헌

  1. Cole, T. and Green, P. (1992). Smoothing reference centile curves: The LMS method and penalized likelihood, Statistics in Medicine, 11, 1305-1319. https://doi.org/10.1002/sim.4780111005
  2. Heagerty, P. and Pepe, M. (1999). Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in U.S. children, Journal of the Royal Statistical Society: Series C, 48, 533-551. https://doi.org/10.1111/1467-9876.00170
  3. Hendricks, W. and Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity, Journal of the American Statistical Association, 87, 58-68. https://doi.org/10.1080/01621459.1992.10475175
  4. Kimeldorf, G. and Wahba, G. (1971). Some results on Tchebycheffian spline functions, Journal of Mathematical Analysis and Applications, 33, 82-95. https://doi.org/10.1016/0022-247X(71)90184-3
  5. Koenker, R. and Bassett, G. (1978). Regression quantiles, Econometrica, 4, 33-50.
  6. Koenker, R. and Geling, R. (2001). Reappraising Medfly Longevity: A quantile regression survival analysis, Journal of the American Statistical Association, 96, 458-468. https://doi.org/10.1198/016214501753168172
  7. Koenker, R. and Hallock, K. (2001). Quantile Regression, Journal of Economic Perspectives, 15, 143-156. https://doi.org/10.1257/jep.15.4.143
  8. Li, Y., Liu, Y. and Zhu, J. (2007). Quantile regression in reproducing kernel hilbert spaces, Journal of the American Statistical Association, 102, 255-268. https://doi.org/10.1198/016214506000000979
  9. Liu, Y. and Wu, Y. (2011). Simultaneous multiple non-crossing quantile regression estimation using kernel constraints, Journal of Nonparametric Statistics, 23, 415-437. https://doi.org/10.1080/10485252.2010.537336
  10. Takeuchi, I., Le, O. V., Sears, T. D. and Smola, A. J. (2006). Nonparametric quantile estimation, Journal of Machine Research, 7, 1231-1264.
  11. Wang, H. and He, X. (2007). Detecting differential expressions in genechip microarray studies: A quantile approach, Journal of the American Statistical Association, 102, 104-112. https://doi.org/10.1198/016214506000001220
  12. Wang, H., Li, G. and Jiang, G. (2007). Robust regression shrinkage and consistent variable selection through the LAD-Lasso, Journal of Business and Economics Statistics, 25, 347-355. https://doi.org/10.1198/073500106000000251
  13. Wu, Y. and Liu, Y. (2009). Stepwise multiple quantile regression estimation using non-crossing constraints, Statistics and Its Inferface, 2, 299-310. https://doi.org/10.4310/SII.2009.v2.n3.a4
  14. Xu, J. and Ying, Z. (2010). Simultaneous estimation and variable selection in median regression using Lasso-type penalty, Annals of the Institute of Statistical Mathematics, 62, 487-514. https://doi.org/10.1007/s10463-008-0184-2
  15. Yang, S. (1999). Censored median regression using weighted empirical survival and hazard functions, Journal of the American Statistical Association, 94, 137-145. https://doi.org/10.1080/01621459.1999.10473830