DOI QR코드

DOI QR Code

Effects of Forage Feeding Levels on the Udder Volume, Serum Hormone Level and Lactation Characteristics in Dairy Cows: From Growing to Lactating Phase

Holstein 젖소에서 조사료 급여 수준이 유방크기, 호르몬 및 산유특성에 미치는 영향: 육성기부터 비유기까지

  • Lee, Byung-Woo (Colleges of Veterinary Medicine and Institute of Veterinary Science) ;
  • Sugathan, Subi (Animal Life Science, Kangwon National University) ;
  • Singh, Naresh Kumar (Animal Life Science, Kangwon National University) ;
  • Yoon, Sei-Hyung (Grassland & Forage Division, National Institute of Animal Science) ;
  • Yoon, Byung-Il (Colleges of Veterinary Medicine and Institute of Veterinary Science)
  • 이병우 (강원대학교 수의과대학 및 동물의학종합연구소) ;
  • 수비 수가탄 (강원대학교 동물생명과학대학) ;
  • 나레시 쿠마 싱 (강원대학교 동물생명과학대학) ;
  • 윤세형 (국립축산과학원 초지사료과) ;
  • 윤병일 (강원대학교 수의과대학 및 동물의학종합연구소)
  • Received : 2013.11.25
  • Accepted : 2013.12.10
  • Published : 2013.12.31

Abstract

In the present study, we investigated the effects of high forage diets on the volume of udder, hormone level in blood, and lactation characteristics in the Holstein dairy cow. We divided into two groups; high forage diet [HF, concentrate: forage=4:6 n=41] and low forage diet [LF, 6:4 n=21]. Five cows were selected from each group based on their age for measuring the udder volume and the serum levels of estradiol and progesterone. Lactation characteristics were compared between HF and LF. The udder volume was 2.5 fold larger in HF at early gestation (p<0.01), but no difference was noted afterward. For the hormone levels, no significant difference was found between the groups. In HF, milk yield was significantly increased and maintained high longer, while somatic cell count was approximately 50% lower. Meanwhile, the milk fat content was significantly lower in HF during early lactating phase (p<0.001), but there was no difference thereafter. For milk protein and solid content, and MUN, no differences were found between the groups during lactation. Our results indicated that feeding high forage diets to dairy cows can increase milk yield and quality without notable changes in the udder volume and hormone level.

본 연구결과 조농비가 다른 사료를 각각 급여한 젖소에서 임신초기의 유방 크기는 HF군이 LF군 보다 2.4배 가량 유의하게 컸으나, 임신중기와 착유기 동안에는 두 군 간에 차이가 없었다. Estradiol의 혈중농도는 두 군 모두 사춘기부터 서서히 증가하여 임신기간 동안 사춘기의 2~3.5배가량이 되었으며, 두 군간 유의한 차이는 나타나지 않았다. 착유기 전 기간에 걸쳐서도 estradiol의 농도는 두 군간 차이가 없었다. Progesterone의 혈중 농도는 사춘기부터 증가하기 시작하여 임신중기까지 두 군 모두 비슷한 농도로 유지되었으며, 시험 전 기간에 걸쳐 두 군간 유의한 차이는 없었다. 산유량 4% FCM은 두 군 모두 분만 후 증가하다 LF군은 분만 100일, HF군은 150일을 기점으로 감소하였다. 그러나, 분만 후 50일까지를 제외하고 그 후 전 기간에 걸쳐 양질 조사료 함량이 높은 사료를 급여한 HF군의 젖소에서 산유량이 유의하게 높았으며, 분만 250일 까지도 높은 산유량을 유지하였다. 우유 내 체세포 수는 분만초기를 제외하고 착유기 전 기간 동안 HF군에서 유의하게 감소하였다. 유지율은 분만 후 비유 초기에 LF군에서 다소 높게 나타났으나, 그 이후부터는 두 군간 차이가 없었으며, 그밖에 우유 내 단백율, 고형율, MUN 모두 두 군간 차이는 관찰되지 않았다. 산유량과 체세포 수 및 유지율을 기초로 계산한 유대에 있어 HF군이 LF군에 비하여 최고 141.5% 증대되었다. 본 연구결과로부터 젖소의 양질 조사료의 함량을 적당 수준으로 증가시킴으로써 유방의 크기나 관련 호르몬의 변화 없이 우유의 생산량을 증대시키고 우유의 질을 높일 수 있을 것으로 평가되었다.

Keywords

References

  1. Bocchinfuso, W.P., Lindzey, J.K., Hewitt, S.C., Clark, J.A., Myers, P.H., Cooper, R. and Korach, K.S. 2000. Induction of mammary gland development in estrogen receptor-alpha knockout mice. Endocrinology. 141:2982-2994. https://doi.org/10.1210/endo.141.8.7609
  2. Capuco, A.V., Ellis, S., Wood, D.L., Akers, R.M. and Garrett, W. 2002. Postnatal mammary ductal growth: three-dimensional imaging of cell proliferation, effects of estrogen treatment, and expression of steroid receptors in prepubertal calves. Tissue & Cell. 34:143-154. https://doi.org/10.1016/S0040-8166(02)00024-1
  3. Chalupa, W., O'Dell, G.D., Kutches, A.J. and Lavker, R. 1970. Supplemental corn silage or baled hay for correction of milk fat depressions produced by feeding pellets as the sole forage. Journal of Dairy Science. 53:208-214. https://doi.org/10.3168/jds.S0022-0302(70)86181-1
  4. Clark, J.H. and Davis, C.L. 1983. Future improvement of milk production; potential for nutritional improvement. Journal of Animal Science. 57:750-764. https://doi.org/10.2527/jas1983.573750x
  5. Cole, J.B., Null, D.J. and Vanraden, P.M. 2009. Best prediction of yields for long lactations. Journal of Dairy Science. 92:1796-1810. https://doi.org/10.3168/jds.2007-0976
  6. Connor, E.E., Meyer, M.J., Li, R.W., Van Amburgh, M.E., Boisclair, Y.R. and Capuco, A.V. 2007. Regulation of gene expression in the bovine mammary gland by ovarian steroids. Journal of Dairy Science. 90 Suppl 1:E55-65. https://doi.org/10.3168/jds.2006-466
  7. Ji, D.H., Lee, B.H., Peng, J.L., Najad, J.G. and Sung, K.I. 2013. 11th World Conference on Animal Production. pp. 257.
  8. Ferrell, C.L, Garrett, W.N. and Hinman, N. 1976. Growth development and composition of the udder and gravid uterus of beef heifers during pregnancy. Journal of Animal Science. 42:1477-1489. https://doi.org/10.2527/jas1976.4261477x
  9. Grant, D.R. and Patel, P.R. 1980. Changes of Protein Composition of Milk by Ratio of Roughage to Concentrate. Journal of Dairy Science. 63:756-761. https://doi.org/10.3168/jds.S0022-0302(80)83004-9
  10. Hoover, W.H. 1986. Chemical factors involved in ruminal fiber digestion. Journal of Dairy Science. 69:2755-2766. https://doi.org/10.3168/jds.S0022-0302(86)80724-X
  11. Knight, C.H. 2000. The importance of cell division in udder development and lactation. Livestock Production Science. 66:169-176. https://doi.org/10.1016/S0301-6226(00)00224-4
  12. Lee, B.W., Kim, Y.H., Jeon, B.S., Singh, N.K., Kim, W.H., Kim, M.J. and Yoon, B.I. 2012. Expression of ErbB receptors in the prepubertal and pubertal virgin mammary glands of dairy cows. Korean Journal of Veterinary Research. 52:269-273.
  13. Lee, B.H., Ji, D.H., Peng, J.L., Najad, J.G. and Sung, K.I. 2013. 11th World Conference on Animal Production. pp. 257
  14. Lydon, J.P., Sivaraman, L. and Conneely, O.M. 2000. A reappraisal of progesterone action in the mammary gland. Journal of Mammary Gland Biology and Neoplasia. 5:325-338. https://doi.org/10.1023/A:1009555013246
  15. Macciotta, N.P., Vicario, D. and Cappio-Borlino, A. 2005. Detection of different shapes of lactation curve for milk yield in dairy cattle by empirical mathematical models. Journal of Dairy Science. 88:1178-1191. https://doi.org/10.3168/jds.S0022-0302(05)72784-3
  16. McNally, S. and Martin, F. 2011. Molecular regulators of pubertal mammary gland development. Annals of Medicine. 43:212-234. https://doi.org/10.3109/07853890.2011.554425
  17. Pollott, G.E. 2000. A biological approach to lactation curve analysis for milk yield. Journal of Dairy Science. 83:2448-2458. https://doi.org/10.3168/jds.S0022-0302(00)75136-8
  18. Sheffield, L.G. 1988. Organization and growth of mammary epithelia in the mammary gland fat pad. Journal of Dairy Science. 71:2855-2874. https://doi.org/10.3168/jds.S0022-0302(88)79881-1
  19. Shyamala, G. 1997. Roles of estrogen and progesterone in normal mammary gland development insights from progesterone receptor null mutant mice and in situ localization of receptor. Trends in Endocrinology and Metabolism. 8:34-39. https://doi.org/10.1016/S1043-2760(96)00207-X
  20. Silberstein, G.B., Van Horn, K., Shyamala, G. and Daniel, C.W. 1994. Essential role of endogenous estrogen in directly stimulating mammary growth demonstrated by implants containing pure antiestrogens. Endocrinology. 134:84-90. https://doi.org/10.1210/endo.134.1.8275973
  21. Smith, N.E. 1976. Maximizing Income over Feed Costs: Evaluation of Production Response Relationships. Journal of Dairy Science. 59:1193-1199. https://doi.org/10.3168/jds.S0022-0302(76)84344-5
  22. Smith, K.L and Schanbacher, F.L. 1973. Hormone induced lactation in the bovine. I. Lactational performance following injections of 17-estradiol and progesterone. Journal of Dairy Science. 56:738-743. https://doi.org/10.3168/jds.S0022-0302(73)85243-9
  23. Spahr, S.L. 1977. Optimum Rations for Group Feeding. Journal of Dairy Science. 60:1337-1344. https://doi.org/10.3168/jds.S0022-0302(77)84031-9
  24. Sternlicht, M.D. 2006. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Research. 8:201. https://doi.org/10.1186/bcr1368
  25. Sudweeks, E., Ely, L., Mertens, D. and Sisk, L. 1981. Assessing Minimum Amounts and Form of Roughages in Ruminant Diets: Roughage Value Index System. Journal of Animal Science. 53:1406-1411. https://doi.org/10.2527/jas1981.5351406x
  26. Voelker, J.A., Burato, G.M. and Allen, M.S. 2002. Effects of pretrial milk yield on responses of feed intake, digestion, and production to dietary forage concentration. Journal of Dairy Science. 85:2650-2661. https://doi.org/10.3168/jds.S0022-0302(02)74350-6
  27. Walker, V.R. and Korach, K.S. 2004. Estrogen receptor knockout mice as a model for endocrine research. Institute for Laboratory Animal Research Journal. 45:455-461. https://doi.org/10.1093/ilar.45.4.455
  28. Whitlock, L.A., Schingoethe, D.J., Hippen, A.R., Kalscheur, K.F. and AbuGhazaleh, A.A. 2003. Milk production and composition from cows fed high oil or conventional corn at two forage concentrations. Journal of Dairy Science. 86:2428-2437. https://doi.org/10.3168/jds.S0022-0302(03)73837-5
  29. 낙농진흥회, 2013. 유대조견표.
  30. 농림수산검역검사본부, 2011. 원유의 위생등급기준. 농림수산검역검사본부 고시 제2011-32호.
  31. 농림수산식품부, 2011. 조사료증산대책. pp. 3.
  32. 농협중앙회, 2013, 2012년도 한국 유우군 능력검정 사업 보고서, pp. 76
  33. 축산과학원, 2007, 한국사양표준 젖소, 발간등록번호 11-1390271-000105-13. pp. 192-193.