DOI QR코드

DOI QR Code

Hollow SnO2 Hemisphere Arrays for Nitric Oxide Gas Sensing

  • Hoang, Nhat Hieu (Department of Materials Science and Engineering, Chungnam National University) ;
  • Nguyen, Minh Vuong (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2013.09.17
  • Accepted : 2013.11.11
  • Published : 2013.12.27

Abstract

We present an easy method of preparing two-dimensional (2D) periodic hollow tin oxide ($SnO_2$) hemisphere array gas sensors using polystyrene (PS) spheres as a template. The structures were fabricated by the sputter deposition of thin tin (Sn) metal over an array of PS spheres on a planar substrate followed by calcination at an elevated temperature to oxidize Sn to $SnO_2$ while removing the PS template cores. The $SnO_2$ hemisphere array structures were examined by scanning electron microscopy and X-ray diffraction. The structures were calcined at various temperatures and their sensing properties were examined with varying operation temperatures and concentrations of nitric oxide (NO) gas. Their gas-sensing properties were investigated by measuring the electrical resistances in air and the target gases. The measurements were conducted at different NO concentrations and substrate temperatures. A minimum detection limit of 30 ppb, showing a sensitivity of S = 1.6, was observed for NO gas at an operation temperature of $150^{\circ}C$ for a sample having an Sn metal layer thickness corresponding to 30 sec sputtering time and calcined at $600^{\circ}C$ for 2 hr in air. We proved that high porosity in a hollow $SnO_2$ hemisphere structure allows easy diffusion of the target gas molecules. The results confirm that a 2D hollow $SnO_2$ hemisphere array structure of micronmeter sizes can be a good structural morphology for high sensitivity gas sensors.

Keywords

References

  1. X. Han and L. P. Naeher, Environ. Int., 32, 106 (2006). https://doi.org/10.1016/j.envint.2005.05.020
  2. D. E. Williams, Sens. Actuators, B, 57, 1 (1999). https://doi.org/10.1016/S0925-4005(99)00133-1
  3. S. Basu and P. K. Basu, J. Sens., 2009, Article ID 861906 (2009).
  4. G. X. Wang, J. S. Park, M. S. Park and X. L. Gou, Sens. Actuators, B, 131, 313 (2008). https://doi.org/10.1016/j.snb.2007.11.032
  5. D. Wang, X. F. Chu and M. L. Gong, Sens. Actuators, B, 117, 183 (2006). https://doi.org/10.1016/j.snb.2005.11.022
  6. C. Zheng, Y. Chu, Y. Dong, Y. Zhan and G. Wang, Mater. Lett., 59, 2018 (2005). https://doi.org/10.1016/j.matlet.2005.02.042
  7. T. Hyodo, S. Abe, Y. Shimizu and M. Egashira, Sens. Actuators, B, 93, 590 (2003). https://doi.org/10.1016/S0925-4005(03)00208-9
  8. G. Xi, Y. He, Q. Zhang, H. Xiao, X. Wang and C. Wang, J. Phys. Chem. C, 112, 11645 (2008). https://doi.org/10.1021/jp802180z
  9. R. G. Deshmukh, S. S. Badadhe, M. V. Vaishampayan and I. S. Mulla, Mater. Lett., 62, 4328 (2008). https://doi.org/10.1016/j.matlet.2008.07.021
  10. J. H. Lee, Sens. Actuators, B, 140, 319 (2009). https://doi.org/10.1016/j.snb.2009.04.026
  11. X. Sun, J. Liu, and Y. Li, J. Chem. Eur., 12, 2039 (2006). https://doi.org/10.1002/chem.200500660
  12. T. Hyodo, K. Sasahara, Y. Shimizu and M. Egashira, Sens. Actuators, B, 106, 580 (2005). https://doi.org/10.1016/j.snb.2004.07.024
  13. J. Zhang, S. Wang, Y. Wang, Y. Wang, B. Zhu, H. Xia, X. Guo, S. Zhang, W.Huang and S. Wu, Sens. Actuators, B, 135, 610 (2009). https://doi.org/10.1016/j.snb.2008.09.026
  14. X. M. Yin, C. C. Li, M. Zhang, Q. Y. Hao, S. Liu, Q.H. Li, L. B. Chen and T. H. Wang, Nanotechnology, 20, 455503 (2009). https://doi.org/10.1088/0957-4484/20/45/455503
  15. L. He, Y. Jia, F. Meng, M. Li and J. Liu, J. Mater. Sci., 44, 4326 (2009). https://doi.org/10.1007/s10853-009-3645-y
  16. H. N. Hieu, N. M. Vuong, H. Jung, D. M. Jang, D. Kim, H. Kim and S. -K. Hong, J. Mater. Chem., 22, 1127 (2012). https://doi.org/10.1039/c1jm13696h
  17. N. D. Hoa, N. V. Quy and D. Kim, Sens. Actuators, B, 142, 253 (2009). https://doi.org/10.1016/j.snb.2009.07.053
  18. G. -Y. Cha, A. H. Bui, W. -W. Baek, S. -T. Lee, D. -D.Lee and J. -S. Huh, Met. Mater. Int., 10, 149 (2004). https://doi.org/10.1007/BF03027318
  19. N. Barsan and U. Weimar, J. Electroceram., 7, 143 (2001). https://doi.org/10.1023/A:1014405811371
  20. C. D. Natale, F. Davide, G. Faglia and P. Nelli, Sens. Actuators, B, 23, 187 (1995). https://doi.org/10.1016/0925-4005(94)01274-L
  21. M. Egashira, Y. Shimizu, Y. Takao and S. Sako, Sens. Actuators, B, 35, 62 (1996). https://doi.org/10.1016/S0925-4005(96)02015-1
  22. J. Santos, P. Serrini, B. O'Beirn and L. Manes, Sens. Actuators, B, 43, 154 (1997). https://doi.org/10.1016/S0925-4005(97)00115-9
  23. N. M. Vuong, D. Kim, H. Jung, H. Kim, and S. K. Hong, J Mater Chem, 22, 6716 (2012). https://doi.org/10.1039/c2jm15971f
  24. H. N. Hieu, N. Q. Dung, J. Kim, and D. Kim, Nanoscale, 5, 5530 (2013). https://doi.org/10.1039/c3nr00889d