DOI QR코드

DOI QR Code

Terpenoid 함유 식물 추출물의 첨가가 반추위 발효와 메탄 발생에 미치는 영향

Effects of Terpenoids-Rich Plant Extracts on Ruminal-fermentation and Methane Production

  • 황희순 (경상대학교 응용생명과학부) ;
  • 하동욱 (경상대학교 응용생명과학부) ;
  • 이수경 (경상대학교 응용생명과학부) ;
  • 이일동 (경상대학교 응용생명과학부) ;
  • 이신자 (경상대학교 농업생명과학연구원) ;
  • 이성실 (경상대학교 응용생명과학부)
  • 투고 : 2013.08.20
  • 심사 : 2013.10.24
  • 발행 : 2013.12.31

초록

본 연구는 Terpenoid 함유 식물 추출물을 이용하여 in vitro 반추위 발효성상 및 메탄생성에 미치는 영향을 알아보고자 수행하였다. 반추위액은 티머시(timothy)와 농후사료를 6:4의 비율로 급여한 반추위 cannula가 시술된 한우 암소에서 채취하였다. 본 실험에 사용한 식물추출물은 박하(Mint), 소나무(Pine), 삼나무(Japan cedar), 초피나무(Sichuan pepper), 편백(Hinoki cypress) 그리고 해송(Japanese black pine)을 사용하였으며, 반추위액과 McDougall buffer를 1:2의 비율로 혼합한 배양액을 0.3g 티머시와 식물 추출물(기질의 5%)이 담긴 50ml serum bottle에 혐기상태로 15ml를 분주하였다. Serum bottle은 $39^{\circ}C$, 150rpm으로 3, 6, 9, 12, 24, 48 및 72시간 동안 배양하였다. 실험 결과 pH 값은 점점 감소하였으며, 전 배양시간에 걸쳐 대조구보다 유의적(p<0.05)으로 높았다. 건물 소화율은 배양 3시간대는 Mint 처리구만 유의적(p<0.05)으로 높았으나, 이후 24시간까지 모든 처리구에서 유의성이 없었다. 총 가스발생량은 전 처리구에서 유의적(p<0.05)으로 낮았으며, 이산화탄소 발생량은 배양 12시간대까지 감소하였으나, 그 이후는 유의적 차이가 없었다. 메탄 발생량의 경우 24시간대에 대조구에 비해 모든 첨가구에서 유의적(p<0.05)으로 감소하였다. 미생물 성장량은 첨가구에 따라 각각 다른 양상을 나타냈으나 24시간대는 모든 처리구에서 유의적(p<0.05)으로 성장량이 감소하였다. 암모니아 측정량은 배양 12시간부터 첨가구에서 증가하는 경향을 보였으나 72시간대는 감소하였다. acetic acid 및 propionic acid도 대조구보다 유의적(p<0.05)으로 높은 것을 확인할 수 있었다. 결과적으로 본 실험에 사용한 Terpenoid 함유 식물 추출물 6종 모두 소화율에 영향을 미치지 않으며 메탄저감 효과를 나타내었다. 특히 Mint 및 Pine 추출물은 총 VFA, acetic acid 및 propionic acid의 생성을 증가시켰으며 상기의 결과를 종합하였을 때, 반추위 발효성상에 악영향을 미치지 않으며 메탄 발생을 저감하는 식물 추출물로는 Mint 및 Pine이 적합하다고 생각된다.

This study was conducted to investigate effects of terpenoids-rich plant extracts (TRPE) on the in vitro ruminal fermentation characteristics and methane production. The ruminal fluid was collected from a cannulated Hanwoo cow fed concentrate and timothy in the ratio of 6 to 4. The TRPE as Mint (Mentha arvensis var. piperascens), Pine (Pinus densiflora), Japan cedar (Cryptomeria japonica), Sichuan pepper (Zanthoxylum piperitum), Hinoki cypress (Chamaecyparis obtuse) and Japanese black pine (Pinus thunbergii) were used in this study. The 15 mL of mixture, contains McDougall buffer and rumen fluid in the ratio of 2 to 1. The mixture was dispensed anaerobically 50 mL serum bottles and it is contained 0.3 g timothy substrate and 5% TRPE. The bottles were incubated at $39^{\circ}C$ for 3, 6, 9, 12, 24, 48 and 72 hours. The pH value decrease by increased incubation times and the pH values at all times were significantly (p<0.05) higher in treatments than in control. The digestibility of dry matter at 3 hours was significantly (p<0.05) higher in mint treatment than in control. Productions of total gas and carbon dioxide at before 12 hours was significantly lower (p<0.05) in treatments than in control. The methane production at 24 hours was significantly (p<0.05) lower in treatments than in control. The concentrations of acetic acid and propionic acid at 24 hours were significantly higher (p<0.05) in mint and pine treatments than in control. In conclusion, the terpenoid-rich plant extracts were shown to decreased methane emission and without adversely affected ruminal fermentation. Therefore, the terpenoid-rich plant extracts as mint and pine were shown to decreased methane production and it has potential possibility for ruminal fermentations.

키워드

참고문헌

  1. Agarwal, N., C. Shekhar, R. Kumar, L. C. Chaudhary, and D. N. Kamra. 2009. Effect of peppermint (Mentha piperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Anim. Feed Sci. Technol. 148: 321-327. https://doi.org/10.1016/j.anifeedsci.2008.04.004
  2. A.O.A.C. 1995. Official methods of analysis 16th edition. Association of official analytical chemists, Washington, D.C.
  3. Argyle, J. L. and R. L. Baldwin. 1988. Modeling of rumen water kinetics and effects of rumen pH changes. J. Dairy Sci. 71: 1178-1188. https://doi.org/10.3168/jds.S0022-0302(88)79672-1
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Busquet, M., S. Calsamiglia, A. Ferret, M. D. Carro, and C. Kamel. 2005. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J. Dairy Sci. 88: 4393-4404. https://doi.org/10.3168/jds.S0022-0302(05)73126-X
  6. Calsamiglia, S., M. Busquet, P. W. Cardozo, L. Castillejos, and A. Ferret. 2007. Invited Review: Essential Oils as Modifiers of Rumen Microbial Fermentation. J. Dairy Sci. 90: 2580-2595. https://doi.org/10.3168/jds.2006-644
  7. Crane, A., W. O. Nelson, and R. E. Brown. 1957. Effects of D-limonene and $\alpha$-D-pinene on in vitro carbohydrate dissimilation and methane formation by rumen bacteria. J. Dairy Sci. 40: 1317-1323. https://doi.org/10.3168/jds.S0022-0302(57)94630-1
  8. Craig, W. J. 1999. Health-promoting properties of common herbs. Am. J. Clin. Nutr. 70(3): 491-499.
  9. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin Chem. 8: 130.
  10. Chaves, A. V., M. L. He, W. Z. Yang, A. N. Hristov, T. A. McAllister, and C. Benchaar. 2008. Effects of essential oils on proteolytic, deaminative and methanogenic activities of mixed ruminal bacteria. Can. J. Anim. Sci. 89: 97-104.
  11. Davidson, P. M. and A. S. Naidu, 2000. Phyto-phenols. In Natural Food Antimicrobial Systems (Naidu, A. S. ed). CRC Press. pp. 265-293.
  12. Dijkstra, J., H. D. Neal, C. St., D. E. Beever, and J. France. 1992. Simulation of nutrient digestion, absorption and outflow in the rumen: model description. J. Nutr. 122: 2239-2256.
  13. Dorman, H. J. D. and S. G. Deans. 2000. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88: 308-316. https://doi.org/10.1046/j.1365-2672.2000.00969.x
  14. Duncan, D. B. 1995. Multiple range and multiple F test. Biometrics. 11: 1-6.
  15. Gershenzon, J. and R. Croteau. 1991. Terpenoids. In Herbivores: Their Interactions with Secondary Plant Metabolites (Rosenthal, G. A. and Berenbaum, M. R., eds). Academic Press, pp. 165-219.
  16. Greenhouse Gas Inventory and Research center of Korea. 2005.
  17. Griffin, S. G., S. G. Wyllie, J. L. Markham, and D. N. Leach. 1999. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr. J. 14: 322-332. https://doi.org/10.1002/(SICI)1099-1026(199909/10)14:5<322::AID-FFJ837>3.0.CO;2-4
  18. Ha, J. K., S. S. Lee, Y. S. Moon, and C. H. Kim. 2005. Ruminant nutrition and physiology. Seoul National University press. p. 255.
  19. Hart, K. J., D. R. Yanez-ruiz, S. M. Duval, N. R. McEwan, and C. J. Newbold. 2008. Plant extract to manipulate rumen fermentation. Anim. Feed Sci. Tech. 147: 8-35. https://doi.org/10.1016/j.anifeedsci.2007.09.007
  20. Hwang, H. S., J. U. Ok, S. J. Lee, G. M. Chu, K. H. Kim, Y. K. Oh, S. S. Lee, and S. S. Lee. 2012. Effects of Halogen compounds on in vitro Fermentation Characteristics in the Rumen and Methane Emissions. Kor. J. life sci. 22(9): 1187-1193. https://doi.org/10.5352/JLS.2012.22.9.1187
  21. IPCC. 1992. Intergovernmental panel on climate change. Climate Change 1992. The supplementary report to the IPCC Scientific Assessment. Cambridge University Press, New York.
  22. IPCC (Intergovernmental panel on climate change). 2007. IPCC Fourth Assessment Report.
  23. Irmgard Immig. 1996. The rumen and Hindgut as source of ruminant methanogenesis. Enviromental Monitoring and Assessmant. 42: 57-72. https://doi.org/10.1007/BF00394042
  24. Joblin, K. N. 1999. Ruminal acetogens and their potential to lower ruminant methane emissions. Aust. J. Agric. Res. 50: 1307-1313. https://doi.org/10.1071/AR99004
  25. Kamel, C., H. M. R. Greathead, M. L. Tejido, M. J. Ranilla, and M. D. Carro. 2008. Effects of allicin and diallyl disulfide on in vitro rumen fermentation of a mixed diet. Anim. Feed Sci. Technol. 145(1): 351-363. https://doi.org/10.1016/j.anifeedsci.2007.05.050
  26. Kamra D. N., N. Agarwal, and L. C. Chaudhary. 2006. Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. Anim. Feed Sci. Technol. 145: 351-363.
  27. Kim, H. J. and H. S. Chun. 1999. Biological Functions of Organosulfur Compounds in Allium Vegetables. J. Korean Soc. Food. Sci. Nutr. 28(6): 1412-1423.
  28. Kongmun, P., M. Wanapat, P. Pakdee, and C. Navanukraw. 2010. Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livest. Sci. 127: 38-44. https://doi.org/10.1016/j.livsci.2009.08.008
  29. Lee, S. Y. and J. K. Ha. 2009. Mitigation strategies for enteric methane emission. Proceedings of 2009 Annual Congress of KSAST, KOREA. 1: 103-121.
  30. McCullough, M. E. 1973. Optimum feeding of dairy animals for meat and milk. Univ. of Georgia, Athens.
  31. Martin, S. A. 1998. Manipulation of ruminal fermentation with organic acids: a review. J. Anim. Sci. 76: 3123-3132.
  32. McDougall, E. I. 1948. The composition and output of sheep's saliva. Biochem. J. 43: 99.
  33. McIntosh, F. M., P. Williams, R. Losa, R. J. Wallace, D. A. Beever, and C. J. Newbold. 2003. Effects of essential oils on ruminal microorganisms and their protein metabolism. Appl. Environ. Microbiol. 69: 5011-5014. https://doi.org/10.1128/AEM.69.8.5011-5014.2003
  34. Nugent, J. H. A. and J. L. Mangan. 1981. Characteristics of the rumen proteolysis of fraction I( 18S) leaf protein from lucern (Medicago sativa L.). Br. J. Nutr. 46: 39-58. https://doi.org/10.1079/BJN19810007
  35. Patra, A. K., D. N. Kamra, and N. Agarwal. 2006. Effects of spices on rumen fermentation, methanogenesis and protozoa counts in in vitro gas production test. Int. Cong. Ser. 1293: 176-179. https://doi.org/10.1016/j.ics.2006.01.025
  36. Patra, A. K. and J. Saxena. 2009. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Anton. van Leeuwen. 96: 363-375. https://doi.org/10.1007/s10482-009-9364-1
  37. SAS., 1996. SAS User Guide. Release 6.12 Edition. SAS Inst. Inc. Cary NC. USA.
  38. Sikkema, J., J. A. M. Bont, and B. Poolman. 1994. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269: 8022-8028.
  39. Soliva, C. R., S. Widmer, and M. Kreuzer. 2008. Ruminal fermentation of mixed diets supplemented with St. John's Wort (Hypericum perforatum) flowers and pine (Pinus mugo) oil or mixtures containing these preparations. J. Anim. Feed Sci. 17: 352-362.
  40. Son, J. O. and B. H. Hwang. 1990. Terpenoid Analysis of the Main Softwoods Essential Oil. J. Kor. For. En. 10(2): 84-96.
  41. Song, H. P., S. L. Shim, I. S. Jung, D. H. Kim, and K. S. Kim. 2009. Analysis of volatile organosulfur compounds in korean allium species. Korean J. Food Preserv. 16(6): 929-937.
  42. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48: 185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  43. Tyler S. C. 1991. The global methane budget. In Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethane (J. E. Rogers and W. B. Whitman, eds). American Society of Microbiology, pp. 7-38.
  44. Ultee, A., E. P. Kets, and E. J. Smid. 1999. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 65: 4606-4610.
  45. Wallace, J. R., N. R. McEwan, F. M. McIntosh, B. Trferedegne, and C. J. Newbold. 2002. Natural products as manipulators of rumen fermentation. Asian-Aust. J. Anim. Sci. 15(10):1371-1522. https://doi.org/10.5713/ajas.2002.1371
  46. Wenk, C. 2003. Herb and botanicals as feed additives in monogastric animals. Asian-Aust. J. Anim. Sci. 16: 282-289. https://doi.org/10.5713/ajas.2003.282
  47. Yang, W. Z., C. Benchaar, B. N. Ametaj, A. V. Chaves, M. L. He, and T. A. McAllister. 2007. Effect of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J. Dairy Sci. 90: 5671-5681. https://doi.org/10.3168/jds.2007-0369
  48. Zhang, C. M., Y. Q. Guoa, Z. P. Yuan, Y. M. Wu, J. K. Wang, J. X. Liu, and W. Y Zhub. 2008. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Anim. Feed Sci. Tech. 146: 259-269. https://doi.org/10.1016/j.anifeedsci.2008.01.005