DOI QR코드

DOI QR Code

3D Modeling For Resources Estimation of Ilmenite Deposits in Jikjeon-Ri, Hadong Korea

하동군 북천면 직전리에서 산출되는 티탄철석광상의 자원량 평가를 위한 광체 3D 모델링

  • Kwak, Ji Young (Department of Earth Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Choi, Jin Beom (Department of Earth Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Cho, Hyen Goo (Department of Earth Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University)
  • 곽지영 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 최진범 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 지구환경과학과 및 기초과학연구소)
  • Received : 2013.11.30
  • Accepted : 2013.12.30
  • Published : 2013.12.31

Abstract

Ilmenite deposits are developed along the Precambrian intercumulated anorthosite body in Jikjeon-Ri, Bukcheon-Myeon, Hadong, Korea. Both detailed geological survey and drilling prospecting data for seven boreholes can be used to do resource estimation with GOCAD S/W. 3D modeling using geostatistics is applied to predict the shape and size of Ti ore bodies. As a result, 5 Ti ore veins occurred along N-S direction and average grade of Ti and ilmenite resources are calculated as 2.98 wt% Ti and 7,494,303 metric tons ilmenite ore reserves (Ti 223,330 t). This 3D modeling will be applied to the whole ilmenite deposits in Hadong-Sancheong area to predict the exact distribution and resources estimations of Ti ores.

하동군 북천면 직전리 일대에는 선캄브리아기 간극누적형 회장암체 내 티탄철석 광상이 발달하고 있다. 정밀 지질조사를 통한 노두 자료와 7개 공의 시추탐사 자료를 바탕으로 GOCAD S/W를 사용하여 티타늄의 자원량을 평가하였다. 티탄철석 광체의 지하 부존상태 및 규모를 예측하기 위해 3차원 모델링을 수행한 결과 5개 맥상 광체가 남북방향으로 발달하였으며, 지구통계학적 기법을 활용하여 평균품위 및 자원량을 산출한 결과 Ti 평균 품위 2.98 wt%, 티탄철석 광량 7,494,303톤 (Ti 223,330톤)이 산정되었다. 이번 연구에 수행된 3차원 모델링을 하동지역 회장암 내 티탄광상 전체에 적용함으로써 티타늄 광체의 3차원적 형태와 자원량 평가에 활용할 수 있을 것이다.

Keywords

References

  1. Ahn, H.S. (2013) Three-Dimentional geologic modeling of the pohang basin distributed in Haedo-Dong, Nam-Gu, Pohang-Si, Korea. M.S. thesis, Seoul National University, Seoul, 75p.
  2. Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, D., Viseur, S., and Sausse, J. (2009) Surface-Based 3D Modeling of Geological Structures. Mathematical Geosciences 2009, 41, 927-945.
  3. Choi, J.G. (2013) Geostatistics. Sigma Press, 413p (in Korean).
  4. Chun, S.H., Sun, C.G., and Chung, C.K. (2005) Application of geostatistical method for geo-layer information. Journal of The Korean Society of Civil Engineers, 25, 103-115 (in Korean with English abstract).
  5. Esfahani, N.M. and Asghari, O. (2013) Fault detection in 3D by sequential Gaussian simulation of Rock Quality Designation (RQD) Case study: Gazestan phosphate ore deposit, Central Iran. Arabian Journal of Geosciences, 6, 3737-3747. https://doi.org/10.1007/s12517-012-0633-3
  6. Gwak, S.H. and Lee, D.S. (2001) 3-D Visualization of reservoir characteristics through GOCAD. Journal of the Korean Geophysical Society, 4, 80-83 (in Korean with English abstract).
  7. Hartman, H.L. and Mutmansky, J.L. (2002) Introductory Mining Engineering (2nd Ed). John Wiley & Sons, 570p.
  8. Jang, J.H., Hong, T.K., and Pyong, N.K., (2003) Spatial Data Analysis using the Kriging Method. The Korean Communications in Statistics, 10, 432-432 (in Korean with English abstract). https://doi.org/10.5351/CKSS.2003.10.2.423
  9. Jeong, J.G., Kim, W.S., and Watkinson, D.H. (1989) Geologic structire of Hadong anorthositic rocks and associated titanium orebody. Journal of The Geological Society of Korea, 25, 98-111 (in Korean with English abstract).
  10. Journel, A.G. (1986) Geostatistics: Models and Tools for the Earth Sciences. Mathematical Geology, 18, 119-140. https://doi.org/10.1007/BF00897658
  11. Jung, J.S., Kim, J.S., Cho, H.S., Song, C.W., Son, M., Ryoo, C.R., Chi, S.J., and Kim, I.S. (2010) Occurrence and deformation of Fe-Ti ores from the Proterozoic Hadong anorthosites, Korea. Journal of the Petrological Society of Korea, 19, 31-49 (in Korean with English abstract).
  12. Kim, N.J. and Kang, P.C. (1965) Geological map of Korea(Chingyo sheet scale 1:50,000). Geological survey of Korea.
  13. Kim, S.Y. and Seo, J.R. (1990) Study on geology and ore deposits for rare metals in Korea. KIER-Research report, KR-90-2D-1, 82p (in Korean with English abstract).
  14. Kim, S.Y, Seo, J.R., Yang, J.I., and Kim, S.B. (1991) Geology and ore deposits of rare elements in Hadong and Uljin Area, Korea. KIGAM research report, KR-91-2D-1, 78p (in Korean with English abstract).
  15. Kim, Y.J., Lee, C.S., and Kang, S.W. (1991) Petrochemistry on intermediated-basic plutons in Jirisan area of the Ryongnam massif. Journal of Korean Earth Science Society, 12, 100-122 (in Korean with English abstract).
  16. Koh, M.S. (2010) Occurrences of ilmenite deposits in Hadong-Sancheong Area. Journal of the Mineralogical Society of Korea, 23, 25-37 (in Korean with English abstract).
  17. Kwak, J.Y. and Choi, J.B. (2013) 3D Modeling and resource estimation of the Archean greenstone belt gold deposits in Australia by using GOCAD. Proceedings of the Annual Joint Conference, the Mineralogical Society of Korea and the Petrological Society of Korea, 3-5 (in Korean).
  18. Kwon, S.T and Jeong, J.G. (1990) Preliminary Sr-Nd isotope study of the Hadong-Sanchung anorthositic rocks in Korea: Implication for their origin and for the precambrian tectonics. Journal of the Geological Society of Korea, 26, 341-349 (in Korean with English abstract).
  19. Lee, D.S. and Kim, H.G. (2002) A case study on 3-D modeling of the orebody by using the 3D modeler. Journal of the Korean Geophysical Society, 5, 93-98 (in Korean with English abstract).
  20. Lee, J.M., Jeong, J.G., and Kim, W.S. (1999) The preliminary study on the evolution of Hadong anorthositic rocks and their genetic relations with ilmenite-baearing ore bodies. Journal of The Geological Society of Korea, 35, 321-336 (in Korean with English abstract).
  21. Lee, S.M. (1980) Some metamorphic aspects of the Meta-pelites in Jirisan(Hadong-Sancheong) Region. Journal of The Geological Society of Korea, 16, 1-15 (in Korean with English abstract).
  22. Lee, S.M., Na, K.C., Lee, S.H., Park, B.Y., and Lee, S.W. (1981) Regional metamorphism of the metamorphic rock complex in the southeastern region of the Sobaegsan massif. Journal of The Geological Society of Korea, 17, 169-188 (in Korean with English abstract).
  23. Mallet, J.L. (1989) Discrete Smooth Interpolation. ACM Transactions on Graphics, 8, 121-144. https://doi.org/10.1145/62054.62057
  24. Mallet, J.L. (2002) Geomodeling. OXFORD University Press, 599p.
  25. Moon, J.J., Moon, S.W., and Jwa, Y.J. (2012) SHRIMP zircon ages of the dioritic rocks from the Hadong area in the southeastern Yeongnam massif. Fall Conference of the Association of Korean Geoscience Societies, The Geological Society of Korea, 211 (in Korean).
  26. Naji, H.S. and Khalil, M.K. (2012) 3D geomodeling of the Lower Cretaceous oil reservoir Masila oil field, Yemen. Arabian Journal of Geosciences, 5, 723-746. https://doi.org/10.1007/s12517-010-0226-y
  27. Park, K.H., Kim, D.Y., and Song, Y.S. (2001) Sm-Nd mineral ages of charnockites and ilmenite-bearing anorthositic rocks of Jirisan area and their generic relationship. Journal of the Petrological Society of Korea, 10, 27-35 (in Korean with English abstract).
  28. Schetselaar, E.M. (2013) Mapping the 3D lithofacies architecture of a VMS ore system on a curvilinearfaulted grid: A case study from the Flin Flon mining camp, Canada. Ore Geology Reviews, 53, 261-275. https://doi.org/10.1016/j.oregeorev.2013.01.012
  29. Schneider, A., Gerke, H.H., and Maurer, T. (2011) 3D initial sediment distribution and quantification of mass balances of an artificially-created hydrological catchment based on DEMs from aerial photographs using GOCAD. Physics and Chemistry of the Earth, 36, 87-100. https://doi.org/10.1016/j.pce.2010.03.023
  30. Seo, J.R., Park, S.W., Lee, P.G., Oh, M.S., and Lee, B.J. (1992) Study of rare metal mineral resources in the Hadong area. KIGAM research report. KR-92-1C-2, 72p (in Korean with English abstract).
  31. Wang, G., Zhu, Y., Zhang, S., Yan, C., Ma, Z., Hong, D., and Chen, T. (2012) 3D geological modeling based on gravitational and magnetic data inversion in the Luanchuan ore region, Henan Province, China. Journal of Applied Geophysics, 80, 1-11. https://doi.org/10.1016/j.jappgeo.2012.01.006

Cited by

  1. 3D Modeling Approaches in Estimation of Resource and Production of Musan Iron Mine, North Korea vol.48, pp.5, 2015, https://doi.org/10.9719/EEG.2015.48.5.391
  2. A Comparative Analysis between 3D Geological Modeling and Magnetic Data of Fe-Mn Ore in Ugii Nuur, Mongolia vol.48, pp.4, 2015, https://doi.org/10.9719/EEG.2015.48.4.313
  3. 하동군 북천면 지역 함티타늄광체 내 티탄철석의 산출특성 vol.27, pp.4, 2013, https://doi.org/10.9727/jmsk.2014.27.4.197
  4. 무인항공기와 3차원 지표모델의 광해방지사업 모니터링에 대한 효율성 고찰 vol.30, pp.1, 2013, https://doi.org/10.9727/jmsk.2016.30.1.1