References
- Adachi Y, Tsuchihashi J, Shiraishi N, et al (2003). AFP-producing gastric carcinoma: multivariate analysis of prognostic factors in 270 patients. Oncology, 65, 95-101. https://doi.org/10.1159/000072332
- Altman D, De Stavola B, Love S, Stepniewska K (1995). Review of survival analyses published in cancer journals. Bri J Cancer, 72, 511. https://doi.org/10.1038/bjc.1995.364
- Andersen PK (1988). Multistate models in survival analysis: a study of nephropathy and mortality in diabetes. Stat Med, 7, 661-70. https://doi.org/10.1002/sim.4780070605
- Andersen PK, Keiding N (2002). Multi-state models for event history analysis. Stat Methods Med Res, 11, 91-115. https://doi.org/10.1191/0962280202SM276ra
- Association JGC (2011). Japanese gastric cancer treatment guidelines 2010 (ver. 3). Gastric Cancer, 14, 113-23. https://doi.org/10.1007/s10120-011-0042-4
- Biglarian A, Hajizadeh E, Kazemnejad A, Zali M (2009). Survival analysis of gastric cancer patients using Cox model: a five year study. TUMJ, 67, 5.
- Buonadonna A, Lombardi D, De Paoli A, Bidoli E, Frustaci S (2003). Adenocarcinoma of the stomach: univariate and multivariate analyses of factors associated with survival. Suppl Tumori, 2, 31-4.
- Chau I, Norman AR, Cunningham D, et al (2004). Multivariate prognostic factor analysis in locally advanced and metastatic esophago-gastric cancer-pooled analysis from three multicenter, randomized, controlled trials using individual patient data. J Clin Oncol, 22, 2395-403. https://doi.org/10.1200/JCO.2004.08.154
- Collett D (2003). Modelling survival data in medical research: CRC press.
- De Wreede LC, Fiocco M, Putter H (2010). The mstate package for estimation and prediction in non-and semi-parametric multi-state and competing risks models. Comput Methods Programs Biomed, 99, 261-74. https://doi.org/10.1016/j.cmpb.2010.01.001
- Dehkordi B (2007). Comparing cox regression and parametric models for survival analysis of patients with gastric cancer. Iranian J Epidemiol, 3.
- Dehkordi BM, Tabatabaee H (2007). Modeling survival analysis in gastric cancer patients using the proportional hazards model of Cox. Iran J Epidemiol, 3, 1-2.
- Ding YB, Chen GY, Xia JG, et al (2004). Correlation of tumor-positive ratio and number of perigastric lymph nodes with prognosis of patients with surgically-removed gastric carcinoma. World J Gastroenterol, 10, 182-5. https://doi.org/10.3748/wjg.v10.i2.182
- Escobar LA, Meeker Jr WQ (1992). Assessing influence in regression analysis with censored data. Biometrics, 48, 507-28. https://doi.org/10.2307/2532306
- Gunderson LL, Sosin H (1982). Adenocarcinoma of the stomach: areas of failure in a re-operation series (second or symptomatic look) clinicopathologic correlation and implications for adjuvant therapy. Int J Radiation Oncol & Biology & Physics, 8, 1-11. https://doi.org/10.1016/0360-3016(82)90185-7
- Hosmer Jr DW, Lemeshow S, May S (2011). Applied survival analysis: regression modeling of time to event data: Wiley-Interscience.
- Hougaard P (1999). Multi-state models: a review. Lifetime Data Anal, 5, 239-64. https://doi.org/10.1023/A:1009672031531
- Jackson CH (2011). Multi-state models for panel data: the msm package for R. J Stat Software, 38, 1-29.
- Kay R (1986). A Markov model for analysing cancer markers and disease states in survival studies. Biometrics, 42, 855-65. https://doi.org/10.2307/2530699
- Klein JP, Klotz JH, Grever MR (1984). A biological marker model for predicting disease transitions. Biometrics, 40, 927-36. https://doi.org/10.2307/2531144
- Klein JP, Moeschberger ML (2003). Survival analysis: techniques for censored and truncated data: Springer.
- Mohagheghi MA (2004), Annual report of Tehran cancer registery 1999: The cancer institute publication.
- Mohagheghi MA, Mosavi-Jarrahi A, Zeraati H (1998). Annual report of Tehran University of medical sciences district cancer registery 1997. Tehran: The cancer institute publication.
- Nardi A, Schemper M (2003). Comparing Cox and parametric models in clinical studies. Stat Med, 22, 3597-610. https://doi.org/10.1002/sim.1592
- Orbe J, Ferreira E, Nunez Anton V (2002). Comparing proportional hazards and accelerated failure time models for survival analysis. Stat Med, 21, 3493-510. https://doi.org/10.1002/sim.1251
- Parkin D (1998). Epidemiology of cancer: global patterns and trends. Toxicol Lett, 102, 227-34.
- Patel K, Kay R, Rowell L (2006). Comparing proportional hazards and accelerated failure time models: an application in influenza. Pharmaceutical Stat, 5, 213-224. https://doi.org/10.1002/pst.213
- Pourhoseingholi MA, Hajizadeh E, Moghimi Dehkordi B, et al (2007). Comparing cox regression and parametric models for survival of patients with gastric carcinoma. Asian Pac J Cancer Prev, 8, 412.
- Putter H, Fiocco M, Geskus R (2007). Tutorial in biostatistics: competing risks and multi state models. Stat Med, 26, 2389-430. https://doi.org/10.1002/sim.2712
- Sadighi S, Mohagheghi M, Haddad P, et al (2008). Life expectancy with perioperative chemotherapy and chemoradiotherapy for locally advanced gastric adenocarcinoma. TUMJ, 66, 664-9.
- Sadighi S, Raafat J, Mohagheghi M, Meemary F (2005). Gastric carcinoma: 5 year experience of a single institute. Asian Pac J Cancer Prev, 6, 195-6.
- Samadi F, Babaei M, Yazdanbod A, et al (2007). Survival rate of gastric and esophageal cancers in Ardabil province, North-West of Iran. Arch Iran Med, 10, 32-7.
- Schwarz RE, Zagala-Nevarez K (2002). Recurrence patterns after radical gastrectomy for gastric cancer: prognostic factors and implications for postoperative adjuvant therapy. Ann Surg Oncol, 9, 394-400. https://doi.org/10.1007/BF02573875
- Thong-Ngam D, Tangkijvanich P, Mahachai V, Kullavanijaya P (2001). Current status of gastric cancer in Thai patients. J Med Assoc Thailand, 84, 475-82.
- Triboulet J, Fabre S, Castel B, Toursel H (2001). Adenocarcinomas of the distal esophagus and cardia: surgical management. Cancer Radither, 5, 90-7. https://doi.org/10.1016/S1278-3218(01)80013-5
- Weissfeld LA, Schneider H (1990). Influence diagnostics for the Weibull model fit to censored data. Stat Probabil Lett, 9, 67-73. https://doi.org/10.1016/0167-7152(90)90097-Q
- Wisbeck WA, Becker EM, Russell AH (1986). Adenocarcinoma of the stomach: autopsy observations with therapeutic implications for the radiation oncologist. Radiother Oncol 7, 13-8. https://doi.org/10.1016/S0167-8140(86)80120-7
- Yagi Y, Seshimo A, Kameoka S (2000). Prognostic factors in stage IV gastric cancer: univariate and multivariate analyses. Gastric Cancer, 3, 71-80. https://doi.org/10.1007/PL00011699
- Zeraati H, Mahmoudi M, Kazemnejad A, Mohammad K (2005). Postoperative survival in gastric cancer patients and its associated factors: a method based on a non-homogenous semi-markovian process. Int J Cancer Res, 1, 87-93. https://doi.org/10.3923/ijcr.2005.87.93
Cited by
- Pemetrexed is Mildly Active with Good Tolerability in Treating Patients with Gastric Cancer vol.15, pp.17, 2014, https://doi.org/10.7314/APJCP.2014.15.17.7137
- Assessing Misdiagnosis of Relapse in Patients with Gastric Cancer in Iran Cancer Institute Based on a Hidden Markov Multi-state Model vol.15, pp.9, 2014, https://doi.org/10.7314/APJCP.2014.15.9.4109
- Survival Analysis of Patients with Breast Cancer using Weibull Parametric Model vol.16, pp.18, 2015, https://doi.org/10.7314/APJCP.2015.16.18.8567