References
- Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE (2011). Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov, 10, 29-46. https://doi.org/10.1038/nrd3321
- Bence NF, Sampat RM, Kopito RR (2001). Impairment of the ubiquitin-proteasome system by protein aggregation. Science, 292, 1552-5. https://doi.org/10.1126/science.292.5521.1552
- Bugliani M, Liechti R, Cheon H, et al (2013). Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin-proteasome system in pancreatic beta cell dysfunction. Mol Cell Endocrinol, 367, 1-10. https://doi.org/10.1016/j.mce.2012.12.001
- Ciechanover A, Orian A, Schwartz AL (2000). Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays, 22, 442-51. https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<442::AID-BIES6>3.0.CO;2-Q
- Ciechanover A, Schwartz AL (1994). The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J, 8, 182-91.
- Coughlin SS, Calle EE, Teras LR, Petrelli J, Thun MJ (2004). Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol, 159, 1160-7. https://doi.org/10.1093/aje/kwh161
- Cvek B, Dvorak Z (2011). The ubiquitin-proteasome system (UPS) and the mechanism of action of bortezomib. Curr Pharm Des, 17, 1483-99. https://doi.org/10.2174/138161211796197124
- Dang CV, Semenza GL (1999). Oncogenic alterations of metabolism. Trends Biochem Sci, 24, 68-72. https://doi.org/10.1016/S0968-0004(98)01344-9
- Dees EC, Orlowski RZ (2006). Targeting the ubiquitin-proteasome pathway in breast cancer therapy. Future Oncol, 2, 121-35. https://doi.org/10.2217/14796694.2.1.121
- Driscoll JJ, Woodle ES (2012). Targeting the ubiquitin+proteasome system in solid tumors. Semin Hematol, 49, 277-83. https://doi.org/10.1053/j.seminhematol.2012.04.002
- Gillies RJ, Gatenby RA (2007). Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr, 39, 251-7. https://doi.org/10.1007/s10863-007-9085-y
- Goldberg AL (2003). Protein degradation and protection against misfolded or damaged proteins. Nature, 426, 895-9. https://doi.org/10.1038/nature02263
- Grossoni VC, Falbo KB, Kazanietz MG, de Kier Joffe ED, Urtreger AJ (2007). Protein kinase C delta enhances proliferation and survival of murine mammary cells. Mol Carcinog, 46, 381-90. https://doi.org/10.1002/mc.20287
- Hauptmann S, Grunewald V, Molls D, et al (2005). Glucose transporter GLUT1 in colorectal adenocarcinoma cell lines is inversely correlated with tumour cell proliferation. Anticancer Res, 25, 3431-6.
- Hochstrasser M (1995). Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol, 7, 215-23. https://doi.org/10.1016/0955-0674(95)80031-X
- Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90. https://doi.org/10.3322/caac.20107
- Kiley SC, Clark KJ, Duddy SK, Welch DR, Jaken S (1999). Increased protein kinase C delta in mammary tumor cells: relationship to transformtion and metastatic progression. Oncogene, 18, 6748-57. https://doi.org/10.1038/sj.onc.1203101
- Kirk-Ballard H, Wang ZQ, Acharya P, et al (2013). An extract of Artemisia dracunculus L. inhibits ubiquitin-proteasome activity and preserves skeletal muscle mass in a murine model of diabetes. PLoS One, 8, e57112. https://doi.org/10.1371/journal.pone.0057112
- Kroemer G, Pouyssegur J (2008). Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell, 13, 472-82. https://doi.org/10.1016/j.ccr.2008.05.005
- Landis-Piwowar KR, Milacic V, Chen D, et al (2006). The proteasome as a potential target for novel anticancer drugs and chemosensitizers. Drug Resist Updat, 9, 263-73. https://doi.org/10.1016/j.drup.2006.11.001
- Larsson SC, Mantzoros CS, Wolk A (2007). Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer, 121, 856-62. https://doi.org/10.1002/ijc.22717
- Liao S, Li J, Wang L, et al (2010). Type 2 diabetes mellitus and characteristics of breast cancer in China. Asian Pac J Cancer Prev, 11, 933-7.
- Liao S, Li J, Wei W, et al (2011). Association between diabetes mellitus and breast cancer risk: a meta-analysis of the literature. Asian Pac J Cancer Prev, 12, 1061-5.
- Liu Z, Miers WR, Wei L, Barrett EJ (2000). The ubiquitin-proteasome proteolytic pathway in heart vs skeletal muscle: effects of acute diabetes. Biochem Biophys Res Commun, 276, 1255-60. https://doi.org/10.1006/bbrc.2000.3609
- Marfella R, Di Filippo C, D'Amico M, Paolisso G (2007). Diabetes, ubiquitin proteasome system and atherosclerotic plaque rupture. Circ Res, 100, e84-5. https://doi.org/10.1161/01.RES.0000269329.26803.25
- Marfella R, Di Filippo C, Portoghese M, et al (2009). The ubiquitin-proteasome system contributes to the inflammatory injury in ischemic diabetic myocardium: the role of glycemic control. Cardiovasc Pathol, 18, 332-45. https://doi.org/10.1016/j.carpath.2008.09.008
- Masur K, Vetter C, Hinz A, et al (2011). Diabetogenic glucose and insulin concentrations modulate transcriptome and protein levels involved in tumour cell migration, adhesion and proliferation. Br J Cancer, 104, 345-52. https://doi.org/10.1038/sj.bjc.6606050
- Micel LN, Tentler JJ, Smith PG, Eckhardt GS (2013). Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J Clin Oncol, 31, 1231-8. https://doi.org/10.1200/JCO.2012.44.0958
- Naujokat C, Berges C, Hoh A, et al (2007). Proteasomal chymotrypsin-like peptidase activity is required for essential functions of human monocyte-derived dendritic cells. Immunology, 120, 120-32.
- Orlowski RZ, Dees EC (2003). The role of the ubiquitination-proteasome pathway in breast cancer: applying drugs that affect the ubiquitin-proteasome pathway to the therapy of breast cancer. Breast Cancer Res, 5, 1-7. https://doi.org/10.1186/bcr660
- Rubinsztein DC (2006). The roles of intracellular protein-degradation pathways in neurodegeneration. Nature, 443, 780-6. https://doi.org/10.1038/nature05291
- Sasaki S, Inoguchi T (2012). The role of oxidative stress in the pathogenesis of diabetic vascular complications. Diabetes Metab J, 36, 255-61. https://doi.org/10.4093/dmj.2012.36.4.255
- Sato K, Rajendra E, Ohta T (2008). The UPS: a promising target for breast cancer treatment. BMC Biochem, 9, S2. https://doi.org/10.1186/1471-2091-9-S1-S2
- Smith HJ, Wyke SM, Tisdale MJ (2004). Role of protein kinase C and NF-kappaB in proteolysis-inducing factor-induced proteasome expression in C(2)C(12) myotubes. Br J Cancer, 90, 1850-7.
- Srivastava AK (2002). High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: a potential role in the pathogenesis of vascular dysfunction in diabetes (review). Int J Mol Med, 9, 85-9.
- Warburg, O (1956). On the origin of cancer cells. Science, 123, 309-14. https://doi.org/10.1126/science.123.3191.309
- Wing SS (2008). The UPS in diabetes and obesity. BMC Biochem, 9, S6. https://doi.org/10.1186/1471-2091-9-S1-S6
- Wolf I, Sadetzki S, Catane R, Karasik A, Kaufman B (2005). Diabetes mellitus and breast cancer. Lancet Oncol, 6, 103-11. https://doi.org/10.1016/S1470-2045(05)01736-5
- Wu WK, Cho CH, Lee CW, et al (2010). Proteasome inhibition: a new therapeutic strategy to cancer treatment. Cancer Lett, 293, 15-22. https://doi.org/10.1016/j.canlet.2009.12.002
- Wu WS (2006). The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev, 25, 695-705.
Cited by
- 20(S)-Protopanaxadiol Induces Human Breast Cancer MCF-7 Apoptosis through a Caspase-Mediated Pathway vol.15, pp.18, 2014, https://doi.org/10.7314/APJCP.2014.15.18.7919
- Cell Surface GRP78 Accelerated Breast Cancer Cell Proliferation and Migration by Activating STAT3 vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0125634
- UBE2Q1 in a Human Breast Carcinoma Cell Line: Overexpression and Interaction with p53 vol.16, pp.9, 2015, https://doi.org/10.7314/APJCP.2015.16.9.3723
- Curcumin Suppresses Proliferation and Migration of MDA-MB-231 Breast Cancer Cells through Autophagy-Dependent Akt Degradation vol.11, pp.1, 2016, https://doi.org/10.1371/journal.pone.0146553
- APPL1-Mediating Leptin Signaling Contributes to Proliferation and Migration of Cancer Cells vol.11, pp.11, 2016, https://doi.org/10.1371/journal.pone.0166172
- Epsilon-aminocaproic acid prevents high glucose and insulin induced-invasiveness in MDA-MB-231 breast cancer cells, modulating the plasminogen activator system pp.1573-4919, 2017, https://doi.org/10.1007/s11010-017-3096-8
- Induction of cell proliferation, clonogenicity and cell accumulation in S phase as a consequence of human UBE2Q1 overexpression vol.12, pp.3, 2016, https://doi.org/10.3892/ol.2016.4860
- Hyperglycemia and aberrant O-GlcNAcylation: contributions to tumor progression vol.50, pp.3, 2018, https://doi.org/10.1007/s10863-017-9740-x