DOI QR코드

DOI QR Code

Structural and Optical Properties of SiO2 Thick Films by Aerosol Deposition Process

에어로졸 데포지션 법을 이용하여 제조한 SiO2 후막의 구조 및 광학 특성

  • Jang, Chan-Ik (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Koh, Jung-Hyuk (Department of Electronic Materials Engineering, Kwangwoon University)
  • Received : 2012.11.28
  • Accepted : 2012.12.03
  • Published : 2013.01.01

Abstract

Aerosol deposition(AD) coating that enable fabricate films at low temperature have begun to be widely researched for the integration of ceramics as well to realize high-speed deposition rates. For application of ceramic thick film by AD to display and electronic ceramic industry, fabrication of dense structure with a no cracking is required. In this study, to fabricate dense ceramic thick film, the effect of crystal phase of starting powder was investigated. For this study, amorphous and crystalline $SiO_2$ powders were used as starting powders. Two types of $SiO_2$ powders were deposited on glass substrate by AD. In the case of amorphous $SiO_2$ powder, the deposited films had extremely incompact and opaque layer, irrespective of particle size. In contrast to amorphous powder, in the case of crystalline powder, porous structure layer and dense microstructure with no cracking layer were fabricated depending on the particle size. The optimized starting powder size for dense coating layer was $1{\sim}2{\mu}m$. The transmittance of film reached a maximum of 76% at 800 nm.

Keywords

References

  1. P. S. Peercy, Nature, 406, 1023 (2000). https://doi.org/10.1038/35023223
  2. B. T. Lee, S. Hayashi, T. Hirai, and K, Hiraga, Mater. Trans., 34, 573 (1993). https://doi.org/10.2320/matertrans1989.34.573
  3. T. W. Clyne and S. C. Gill, J. Therm. Spray Technol., 5, 401 (1996). https://doi.org/10.1007/BF02645271
  4. J. Rodriguez, A. Martin, R. Fernandz, and J. E. Fernandez, Wear., 255, 950 (2003). https://doi.org/10.1016/S0043-1648(03)00162-5
  5. G. Frank, S. Thorsten, S. Tobias, and K. Heinrich. J. Therm. Spray Techn., 15, 223 (2006). https://doi.org/10.1361/105996306X108110
  6. F. Gartner, T. Stoltenhoff, T. Schmidt, and H. Kreye, J. Therm. Spray Technol., 15, 223 (2006). https://doi.org/10.1361/105996306X108110
  7. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Acta Mater., 51, 4379 (2003). https://doi.org/10.1016/S1359-6454(03)00274-X
  8. C. J. Li and W. Y. Li, J. Surf. Coat. Technol., 167, 278 (2003). https://doi.org/10.1016/S0257-8972(02)00919-2
  9. J. Akedo, J. Am. Ceram. Soc., 89, 1834 (2006). https://doi.org/10.1111/j.1551-2916.2006.01030.x
  10. J. Akedo, J. Therm. Spray Technol., 17, 181 (2008). https://doi.org/10.1007/s11666-008-9163-7
  11. S. M. Nam, N. Mori, H. Kakemoto, and S. Wada, Jpn. J. Appl. Phys., 43, 5414 (2004). https://doi.org/10.1143/JJAP.43.5414
  12. M. Lebedev and S. Krumdieck, Curr. Appl. Phys., 8, 233 (2008). https://doi.org/10.1016/j.cap.2007.10.057
  13. M. Lebedev, J. Akedo, and T. Ito, J. Cryst., 275, 1301 (2004).
  14. J. Akedo and M. Lebedev, Jpn. J. Appl. Phys., 41, 6980 (2002). https://doi.org/10.1143/JJAP.41.6980
  15. D. W. Lee, H. J. Kim, and S. M. Nam, J. Korean. Phys. Soc., 57, 1115 (2010). https://doi.org/10.3938/jkps.57.1115
  16. D. M. Chun and S. H. Ahn, Acta Mater., 59, 2693 (2011). https://doi.org/10.1016/j.actamat.2011.01.007
  17. D. W. Lee, H. J. Kim, Y. H. Kim, Y. H. Yun, and S. M. Nam, J. Am. Ceram. Soc., 38, 1551 (2011).
  18. P. Staszczuk, B. Janczuk, and E. Chibowski, Mater. Chem. Phys., 12, 5 (1985).