References
- T. F. Banchoff and W. F. Pohl, A generalization of the isoperimetric inequality, J. Differential Geometry 6 (1971/72), 175-192.
- J. Bokowski and E. Heil, Integral representation of quermassintegrals and Bonnesenstyle inequalities, Arch. Math. (Basel) 47 (1986), no. 1, 79-89. https://doi.org/10.1007/BF01202503
- T. Bonnesen, Les problems des isoperimetres et des isepiphanes, Gauthier-Villars, Paris, 1929.
- T. Bonnesen and W. Fenchel, Theorie der konvexen Koeper, 2nd ed., Berlin-Heidelberg-New York, 1974.
- O. Bottema, Eine obere Grenze fur das isoperimetrische Defizit ebener Kurven, Nederl. Akad. Wetensch. Proc. A66 (1933), 442-446.
- Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer-Verlag Berlin Heidelberg, 1988.
- V. Diskant, A generalization of Bonnesen's inequalities, Soviet Math. Dokl. 14 (1973), 1728-1731 (Transl. of Dokl. Akad. Nauk SSSR 213 (1973), 519-521).
- H. Flanders, A proof of Minkowski's inequality for convex curves, Amer. Math. Monthly 75 (1968), 581-593. https://doi.org/10.2307/2313773
- E. Grinberg, S. Li, G. Zhang, and J. Zhou, Integral Geometry and Convexity, Proceedings of the International Conference, World Scientific, 2006.
- E. Grinberg, D. Ren, and J. Zhou, The symetric isoperimetric deficit and the containment problem in a plan of constant curvature, preprint.
- L. Gysin, The isoperimetric inequality for nonsimple closed curves, Proc. Amer. Math. Soc. 118 (1993), no. 1, 197-203. https://doi.org/10.1090/S0002-9939-1993-1079698-X
- H. Hadwiger, Die isoperimetrische Ungleichung in Raum, Elemente der Math. 3 (1948), 25-38.
- H. Hadwiger, Vorlesungen uber Inhalt, Oberflache und Isoperimetrie, Springer, Berlin, 1957.
- G. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambradge Univ. Press, Cambradge/New York, 1952.
- R. Howard, The sharp Sobolev inequality and the Banchoff-Pohl inequality on surfaces, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2779-2787. https://doi.org/10.1090/S0002-9939-98-04336-6
- W. Y. Hsiang, An elementary proof of the isoperimetric problem, Chinese Ann. Math. Ser. A 23 (2002), no. 1, 7-12.
- C. C. Hsiung, Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary, Ann. of Math. 73 (1961), no. 2, 213-220. https://doi.org/10.2307/1970287
- H. Ku, M. Ku, and X. Zhang, Isoperimetric inequalities on surfaces of constant curvature, Canad. J. Math. 49 (1997), no. 6, 1162-1187. https://doi.org/10.4153/CJM-1997-057-x
- M. Li and J. Zhou, An upper limit for the isoperimetric deficit of convex set in a plane of constant curvature, Sci. in China 53 (2010), no. 8, 1941-1946. https://doi.org/10.1007/s11425-010-4018-3
- R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1182-1238. https://doi.org/10.1090/S0002-9904-1978-14553-4
- R. Osserman, Bonnesen-style isoperimetric inequality, Amer. Math. Monthly 86 (1979), no. 1, 1-29. https://doi.org/10.2307/2320297
- A. Pleijel, On konvexa kurvor, Nordisk Math. Tidskr. 3 (1955), 57-64.
- G. Polya and G. Szego, Isoperimetric inequalities in mathematical physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951.
- D. Ren, Topics in Integral Geometry, World Scientific, Sigapore, 1994.
- L. A. Santalo, Integral Geometry and Geometric Probability, Reading, MA: Addison-Wesley, 1976.
- R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Cambridge, 1993.
- E. Teufel, A generalization of the isoperimetric inequality in the hyperbolic plane, Arch. Math. 57 (1991), no. 5, 508-513. https://doi.org/10.1007/BF01246751
- E. Teufel, Isoperimetric inequalities for closed curves in spaces of constant curvature, Results Math. 22 (1992), no. 1-2, 622-630. https://doi.org/10.1007/BF03323109
- J. L. Weiner, A generalization of the isoperimetric inequality on the 2-sphere, Indiana Univ. Math. J. 24 (1974), 243-248. https://doi.org/10.1512/iumj.1974.24.24021
- J. L. Weiner, Isoperimetric inequalities for immersed closed spherical curves, Proc. Amer. Math. Soc. 120 (1994), no. 2, 501-506. https://doi.org/10.1090/S0002-9939-1994-1163337-4
- S. T. Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. Ec. Norm. Super. Paris 8 (1975), no. 4, 487-507. https://doi.org/10.24033/asens.1299
- G. Zhang and J. Zhou, Containment measures in integral geometry, Integral geometry and convexity, 153-168, World Sci. Publ., Hackensack, NJ, 2006.
- J. Zhou, On Bonnesen-type inequalities, Acta. Math. Sinica, Chinese Series 50 (2007), no. 6, 1397-1402.
- J. Zhou and F. Chen, The Bonnesen-type inequalities in a plane of constant curvature, J. Korean Math. Soc. 44 (2007), no. 6, 1363-1372. https://doi.org/10.4134/JKMS.2007.44.6.1363
- J. Zhou, Y. Du, and F. Cheng, Some Bonnesen-style inequalities for higher dimensions, to appear in Acta. Math. Sinica.
- J. Zhou and L. Ma, The discrete isoperimetric deficit upper bound, preprint.
- J. Zhou and D. Ren, Geometric inequalities from the viewpoint of integral geometry, Acta Math. Sci. Ser. A Chin. Ed. 30 (2010), no. 5, 1322-1339.
- J. Zhou, Y. Xia, and C. Zeng, Some new Bonnesen-style inequalities, J. Korean Math. Soc. 48 (2011), no. 2, 421-430. https://doi.org/10.4134/JKMS.2011.48.2.421
- C. Zeng, J. Zhou, and S. Yue, The symmetric mixed isoperimetric inequality of two planar convex domains, Acta Math. Sinica 55 (2012), no. 3, 355-362.
Cited by
- Bonnesen-style Wulff isoperimetric inequality vol.2017, pp.1, 2017, https://doi.org/10.1186/s13660-017-1305-3
- On containment measure and the mixed isoperimetric inequality vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-540
- Reverse Bonnesen style inequalities in a surface $$\mathbb{X}_\varepsilon ^2$$ of constant curvature vol.56, pp.6, 2013, https://doi.org/10.1007/s11425-013-4578-0
- Bonnesen-style symmetric mixed inequalities vol.2016, pp.1, 2016, https://doi.org/10.1186/s13660-016-1146-5