DOI QR코드

DOI QR Code

재생 PET 섬유가 보강된 RC 슬래브의 구조성능 평가

Structural Performance Evaluation of Recycled PET Fiber Reinforced RC Slab

  • 김성배 ((주)바이텍코리아 기술연구소) ;
  • 김장호 (연세대학교 사회환경시스템공학부)
  • 투고 : 2012.06.20
  • 심사 : 2012.12.11
  • 발행 : 2013.01.30

초록

본 연구는 재생 PET 섬유의 구조보강성능을 규명하기 위한 연구의 일환으로 수행되었다. 재생 PET 섬유의 구조보강성능을 규명하기 위하여 철근 콘크리트 슬래브 부재를 제작하여 휨 성능을 수행하고 기존 합성섬유인 PP 섬유와 합성섬유를 혼입하지 않은 Plain 시편과 비교하였으며, 또한 섬유의 혼입율에 따른 거동을 평가하였다. 실험결과 압축강도는 섬유의 혼입율이 증가할수록 감소하는 것으로 나타났으며 감소 비율은 약 2~7%정도로 나타났다. 휨 실험결과로부터 Plain 시편의 극한성능이 가장 우수한 것으로 나타났으며, 에너지 흡수 능력과 연성지수는 재생 PET 섬유를 0.5% 혼입한 시편이 가장 우수한 것으로 평가되었다. 보 시편에 적용한 경우에는 Plain 시편에 비해 연성능력 뿐 아니라 극한성능도 증가되는 것으로 나타났으나 슬래브 시편의 경우 연성능력은 증가되나 극한성능이 감소하는 것을 확인 할 수 있어 보 시편에 비해 상대적으로 보강효과가 적게 나타나고 있다. 따라서 슬래브 구조물에 적용할 경우에는 배합과 혼입량을 적절히 사용해야 할 것으로 사료된다.

This study was performed to verify the structural reinforcing effect of recycled polyethylene terephthalate (PET) fiber. In order to verify the structural reinforcing capacity of RPET fiber, recycled PET fiber added RC slab specimens were prepared to examine the flexural capacity while those of plain concrete and those of added with PP fiber, and the behavior of the specimens were also evaluated. The result shows that the compressive strength reduces as the fiber volume fraction increases, and the rate of reduction varies from 2% to 7%. The result of the flexural capacity shows that the ultimate capacity of plain specimens is the highest compare to those fiber reinforced specimens, but it has shown that specimens reinforced by 5% PET fiber has the highest energy absorption and the ductility index. In the application of PET fiber in slab specimens has shown that ductility capacity have increased where the ultimate capacity decreasing. That is the different tendency of beam specimens, which the ultimate capacity and the ductility of those have both shown the improvement compare to plain concrete specimens, which means the reinforcing effect of PET fiber in slab is less strong than in beam. Therefore, the application of PET fiber in slab structures as reinforcement needs the proper mix proportion of concrete and volume fraction of PET fiber with deep consideration of the structures.

키워드

참고문헌

  1. Falknerm, H. and Teutsch, M., "Comparative Investigations of Plain and Steel Fiber Reinforced Industrial Ground Slabs", 102 Institute fur Baustoffe, Massivbau und Brandschutz, 1993, p.70.
  2. Ha, G. J. and Lee, D. R, "Improvement and Evaluation of Structural Performance of Reinforced Concrete Beam using High Ductile Fiber-Reinforced Mortar with Ground Granulated Blast Furnace Slag", Journal of the Korea Institute for Structural Maintenance Inspection, vol. 14, No. 6, 2010, pp.142-152. (in Korean)
  3. JVEC, Vinyl Environmental Council of Japan, , 2008.
  4. Kim, S. B., Kim, H. Y., Yi, N. H. and Kim, J. H. J, "Strength and Crack Resistance Properties of Fiber Reinforced Concrete Mixed with Recycled PET Fiber", Journal of the Korea Institute for Structural Maintenance Inspection, vol. 14, No. 1, 2010b, pp.102-108. (in Korean)
  5. Kim, S. B., Kim, H. Y., Yi, N. H. and Kim, J. H. J, "Structural Behavior of Fiber Reinforced Concrete Mixed with Recycled PET Fiber", Journal of The Korean Society of Civil Engineers, KSCE, vol. 29, No. 5A, 2009, pp.543-550. (in Korean)
  6. Kim, S. B., Yi, N. H., Kim, H. Y. and Kim, J. H. J, "Mechanical Properties and Flexural Behavior of Recycled PET Fiber Reinforced Eco-Friendly Hwang-toh Concrete", Journal of the Korea Institute for Structural Maintenance Inspection, vol. 14, No. 3, 2010a, pp.152-159. (in Korean)
  7. Korea PET Container Association, , 2008. (in Korean)
  8. Korean Institute of Resources Recycling (KIRR), Recycling White Paper, Cheong Moon Gak, 2008, pp.19-22.
  9. Lee, S. T. and Lee, C. Y., "Flexural Behavior of Hybrid Fiber Reinforcement Strengthened RC Beams", Journal of the Korea Institute for Structural Maintenance Inspection, vol. 14, No. 5, 2010, pp.79-86. (in Korean)
  10. Naaman, A. E. and Jeong, S. M., "Structural Ductility of Concrete Beams Prestressed with FRP Tendons", Nonmetallic (FRP) Reinforcement for Concretes Structures, Second International RILEM Symposium (FRPRCS-2), E&FN Spoon, London, 1995, pp.379-386.
  11. Roesler, J. R. and Barenberg, E. J., "Effect of Static and Fatigue Cracking on Concrete Strain Measurements", Transportation Research Record 1684, Washington, D. C, 1999, pp.51-60.
  12. Won, J. P., Park, C. G., Kim, H. H. and Lee, S. W, "Effect of Recycled PET Fiber Geometry and Length on the Plastic Shrinkage Cracking of Cement Based Composites", Journal of the Korea Concrete Institute, KCI, vol. 19, No. 2, 2007a, pp.233-239. (in Korean) https://doi.org/10.4334/JKCI.2007.19.2.233
  13. Won, J. P., Park, C. G., Kim, H. H. and Lee, S. W., "Effect of Hydrophilic Treatments of Recycled PET Fiber on the Control of Plastic Shrinkage Cracking of Cement Based Composites", Journal of The Korean Society of Civil Engineers, KSCE, vol. 27, No. 3A, 2007b, pp.413-419. (in Korean)
  14. Zollo, R. F., "Fiber-Reinforced Concrete: an Overview after 30 Years of Development", Cement and Concrete Composites, vol. 19, No. 2, 1997, pp.107-122. https://doi.org/10.1016/S0958-9465(96)00046-7