References
- Lundqvist, M. J.; Nilsing, M.; Persson, P.; Lunell, S. Int. J. Quantum. Chem. 2006, 106, 3214. https://doi.org/10.1002/qua.21088
- Subramanian, V.; Karki, A.; Gnanasekar, K. I.; Eddy, F. P.; Rambabu, B. J. Power Sources 2006, 159, 186. https://doi.org/10.1016/j.jpowsour.2006.04.027
- Li, G.; Li, L.; Boerio-Goates, J.; Woodfield, B. F. J. Am. Chem. Soc. 2005, 127, 8659. https://doi.org/10.1021/ja050517g
- Chen, J.; Eberlein, L.; Langford, C. H. J. Photochem. Photobiol., A 2002, 148, 183. https://doi.org/10.1016/S1010-6030(02)00041-2
- Sivalingam, G.; Nagaveni, K.; Hegde, M. S.; Madras, G. Appl. Catal., B 2003, 45, 23. https://doi.org/10.1016/S0926-3373(03)00124-3
- Czanderna, A. W.; Ramachandra Rao, C. N.; Honig, J. M. Trans. Faraday Soc. 1958, 54, 1069. https://doi.org/10.1039/tf9585401069
- Nakamura, T.; Ichitsubo, T.; Matsubara, E.; Muramatsu, A.; Sato, N.; Takahashi, H. Acta Mater. 2005, 53, 323. https://doi.org/10.1016/j.actamat.2004.09.026
- Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
- Madhusudan Reddy, K.; Gopal Reddy, C. V.; Manorama, S. V. J. Solid State Chem. 2001, 158, 180. https://doi.org/10.1006/jssc.2001.9090
- Madhusudan Reddy, K.; Gopal Reddy, C. V.; Manorama, S. V. J. Solid State Chem. 2001, 158, 180. https://doi.org/10.1006/jssc.2001.9090
- Kominami, H.; Takada, Y.; Yamagiwa, H.; Kera, Y.; Inoue, M.; Inui, T. J. Mater. Sci. Lett. 1996, 15, 197. https://doi.org/10.1007/BF00274449
- Shi, L.; Li, C.; Chen, A.; Zhu, Y.; Fang, D. Mater. Chem. Phys. 2000, 66, 51. https://doi.org/10.1016/S0254-0584(00)00277-7
- Sakai, H.; Kawahara, H.; Shimazaki, M.; Abe, M. Langmuir 1998, 14, 2208. https://doi.org/10.1021/la970952r
- Wu, M.; Long, J.; Huang, A.; Luo, Y.; Feng, S.; Xu, R. Langmuir 1999, 15, 8822. https://doi.org/10.1021/la990514f
- Chen, J.; Gao, L.; Huang, J.; Yan, D. J. Mater. Sci. 1996, 31, 3497.
- Patil, P. P.; Phase, D. M.; Kulkarni, S. A.; Ghaisas, S. V.; Kulkarni, S. K.; Kanetkar, S. M.; Ogale, S. B.; Bhide, V. G. Phys. Rev. Lett. 1987, 58, 238. https://doi.org/10.1103/PhysRevLett.58.238
- Mafune, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T.; Sawabe, H. J. Phys. Chem. B 2000, 104, 9111. https://doi.org/10.1021/jp001336y
- Zeng, H.; Cai, W.; Li, Y.; Hu, J.; Liu, P. J. Phys. Chem. B 2005, 109, 18260. https://doi.org/10.1021/jp052258n
- Niu, K. Y.; Yang, J.; Kulinich, S. A.; Sun, J.; Li, H.; Du, X. W. J. Am. Chem. Soc. 2010, 132, 9814. https://doi.org/10.1021/ja102967a
- Yang, G. W. Prog. Mater Sci. 2007, 52, 648. https://doi.org/10.1016/j.pmatsci.2006.10.016
- Yan, Z.; Bao, R.; Huang, Y.; Chrisey, D. B. J. Phys. Chem. C 2010, 114, 11370. https://doi.org/10.1021/jp104884x
- Zhang, X.; Zeng, H.; Cai, W. Mater. Lett. 2009, 63, 191. https://doi.org/10.1016/j.matlet.2008.09.028
- Pan, C.; Chen, S.-Y.; Shen, P. J. Phys. Chem. B 2006, 110, 24340. https://doi.org/10.1021/jp064843+
- Mafuné, F.; Kohno, J.-Y.; Takeda, Y.; Kondow, T. J. Phys. Chem. B 2002, 106, 7575. https://doi.org/10.1021/jp020577y
- Park, D. K.; Lee, S. J.; Lee, J. H.; Choi, M. Y.; Han, S. W. Chem. Phys. Lett. 2010, 484, 254. https://doi.org/10.1016/j.cplett.2009.11.031
- Zheng, H. Y.; Qian, H. X.; Zhou, W. Appl. Surf. Sci. 2008, 254, 2174. https://doi.org/10.1016/j.apsusc.2007.09.005
- Yamamoto, S.; Sumita, T.; Sugiharuto; Miyashita, A.; Naramoto, H. Thin Solid Films 2001, 401, 88. https://doi.org/10.1016/S0040-6090(01)01636-4
- Tsai, M. H.; Chen, S. Y.; Shen, P. J. Aerosol. Sci. 2005, 36, 13. https://doi.org/10.1016/j.jaerosci.2004.08.007
- Syarif, D. G.; Miyashita, A.; Yamaki, T.; Sumita, T.; Choi, Y.; Itoh, H. Appl. Surf. Sci. 2002, 193, 287. https://doi.org/10.1016/S0169-4332(02)00532-9
- Sasaki, T.; Beck, K. M.; Koshizakai, N. Appl. Surf. Sci. 2002, 197- 198, 619. https://doi.org/10.1016/S0169-4332(02)00428-2
- Sanz, M.; Walczak, M.; Oujja, M.; Cuesta, A.; Castillejo, M. Thin Solid Films 2009, 517, 6546. https://doi.org/10.1016/j.tsf.2009.04.026
- Tian, F.; Sun, J.; Yang, J.; Wu, P.; Wang, H. L.; Du, X. W. Mater. Lett. 2009, 63, 2384. https://doi.org/10.1016/j.matlet.2009.08.018
- Jafarkhani, P.; Dadras, S.; Torkamany, M. J.; Sabbaghzadeh, J. Appl. Surf. Sci. 2010, 256, 3817. https://doi.org/10.1016/j.apsusc.2010.01.032
- Singh, S. C.; Swarnkar, R. K.; Gopal, R. J. Nanosci. Nanotechno. 2009, 9, 5367. https://doi.org/10.1166/jnn.2009.1114
- Barreca, F.; Acacia, N.; Barletta, E.; Spadaro, D.; Currò, G.; Neri, F. Appl. Surf. Sci. 2010, 256, 6408. https://doi.org/10.1016/j.apsusc.2010.04.026
- Sugimoto, T.; Zhou, X.; Muramatsu, A. J. Colloid Interface Sci. 2003, 259, 43. https://doi.org/10.1016/S0021-9797(03)00036-5
- Iwabuchi, A.; Choo, C.-K.; Tanaka, K. J. Phys. Chem. B 2004, 108, 10863. https://doi.org/10.1021/jp049200d
- Emeline, A. V.; Ryabchuk, V. K.; Serpone, N. J. Phys. Chem. B 2005, 109, 18515. https://doi.org/10.1021/jp0523367
- Madhusudan Reddy, K.; Manorama, S. V.; Ramachandra Reddy, A. Mater. Chem. Phys. 2003, 78, 239. https://doi.org/10.1016/S0254-0584(02)00343-7
- Mortazavi, S. Z.; Parvin, P.; Reyhani, A.; Golikand, A. N.; Mirershadi, S. J. Phys. Chem. C 2011, 115, 5049. https://doi.org/10.1021/jp1091224
- Levi, C. G.; Jayaram, V.; Valencia, J. J.; Mehrabian, R. J. Mater. Res. 1988, 3, 969. https://doi.org/10.1557/JMR.1988.0969
- Lee, Y.-P.; Liu, Y.-H.; Yeh, C.-S. Phys. Chem. Chem. Phys. 1999, 1, 4681. https://doi.org/10.1039/a905178c
- Lee, S.; Ahn, A.; Choi, M. Y. Phys. Chem. Chem. Phys. 2012, 14, 15677. https://doi.org/10.1039/c2cp42463k
- Zeng, H.; Li, Z.; Cai, W.; Cao, B.; Liu, P.; Yang, S. J. Phys. Chem. B 2007, 111, 14311. https://doi.org/10.1021/jp0770413
- Sasaki, T.; Shimizu, Y.; Koshizaki, N. J. Photochem. Photobiol., A 2006, 182, 335. https://doi.org/10.1016/j.jphotochem.2006.05.031
Cited by
- Nanoparticles via Pulsed Laser Ablation in Nitric Acid vol.34, pp.12, 2013, https://doi.org/10.5012/bkcs.2013.34.12.3909
- Specific Solvent Produces Specific Phase Ni Nanoparticles: A Pulsed Laser Ablation in Solvents vol.118, pp.26, 2014, https://doi.org/10.1021/jp503009a
- in a core–shell nanoparticle for visible-light photocatalysis vol.3, pp.28, 2015, https://doi.org/10.1039/C5TA02958A
- Laser-ablated titania nanoparticles for aqueous processed hybrid solar cells vol.7, pp.7, 2015, https://doi.org/10.1039/C4NR06782G
- Effect of aging on the properties of TiO2 nanoparticle vol.10, pp.3, 2016, https://doi.org/10.1007/s40094-016-0212-1
- Comparison of characteristics of selected metallic and metal oxide nanoparticles produced by picosecond laser ablation at 532 and 1064 nm wavelengths vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0426-8
- Properties of TiO2/Au nanocomposite produced by pulsed laser irradiation of mixture of individual colloids vol.122, pp.12, 2016, https://doi.org/10.1007/s00339-016-0539-0
- nanoparticles on porous silicon for optoelectronics application vol.31, pp.14, 2016, https://doi.org/10.1080/10667857.2015.1132988
- -DMF Solvent by Laser Ablation vol.38, pp.1, 2017, https://doi.org/10.1002/bkcs.11047
- Dependence of laser ablation produced TiO2 nanoparticles on the ablation environment temperature vol.49, pp.6, 2017, https://doi.org/10.1007/s11082-017-1041-4
- Nanoparticles by Plasma-Assisted Electrolysis with Enhanced Photocatalytic Performance vol.165, pp.2, 2018, https://doi.org/10.1149/2.0951802jes
- Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid vol.24, pp.S1, 2018, https://doi.org/10.1017/S1431927618009030
- nanoparticles generated by femtosecond laser ablation in water vol.5, pp.4, 2018, https://doi.org/10.1088/2053-1591/aaba56
- Non-destructive monitoring of molecular modifications in the restoration of works of art on paper⋆ : Application of theoretical and experimental optical spectroscopy vol.134, pp.3, 2013, https://doi.org/10.1140/epjp/i2019-12524-3
- Ultra-bright emission from Sr doped TiO 2 nanoparticles through r-GO conjugation vol.6, pp.3, 2019, https://doi.org/10.1098/rsos.190100
- Controlled tethering of Ag nanoparticles to alter photocatalytic performance of TiO2 vol.6, pp.11, 2013, https://doi.org/10.1088/2053-1591/ab46dc
- In situ synthesis and exhaustion of nano TiO2 on fabric samples using laser ablation method vol.111, pp.1, 2020, https://doi.org/10.1080/00405000.2019.1624035
- Hybrid TiO 2 -ZnO Nanomaterials Prepared Using Laser Ablation in Liquid vol.13, pp.3, 2013, https://doi.org/10.3390/ma13030719
- Highly Defective Dark Nano Titanium Dioxide: Preparation via Pulsed Laser Ablation and Application vol.13, pp.9, 2013, https://doi.org/10.3390/ma13092054
- Role of nano titania on the thermomechanical properties of silicon carbide refractories vol.46, pp.16, 2013, https://doi.org/10.1016/j.ceramint.2020.07.077
- Gamma Irradiation-Assisted Synthesis of Silver Nanoparticle-Embedded Graphene Oxide-TiO2 Nanotube Nanocomposite for Organic Dye Photodegradation vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/6679637
- Antibacterial Activity of TiO2 Nanoparticles Prepared by One-Step Laser Ablation in Liquid vol.11, pp.10, 2013, https://doi.org/10.3390/app11104623
- A novel strategy of nanosized herbal Plectranthus amboinicus, Phyllanthus niruri and Euphorbia hirta treated TiO2 nanoparticles for antibacterial and anticancer activities vol.44, pp.8, 2013, https://doi.org/10.1007/s00449-020-02491-6
- Titanium Dioxide-Infused Hybrid Electrolytes Based on Ionic Liquids Containing Protic Cation: Effect of Solute Concentration on the Electrochemical and Interfacial Properties vol.897, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/kem.897.85
- An Ultrasound-Assisted Minireactor System for Continuous Production of TiO2 Nanoparticles in a Water-in-Oil Emulsion vol.60, pp.41, 2013, https://doi.org/10.1021/acs.iecr.1c02413
- Photoanode modification of dye-sensitized solar cells with Ag/AgBr/TiO2 nanocomposite for enhanced cell efficiency vol.230, pp.None, 2013, https://doi.org/10.1016/j.solener.2021.10.015