DOI QR코드

DOI QR Code

Deep Desulfurization of Fuels by Heteropolyanion-Based Ionic Liquid

  • Li, Jinlei (School of Chemical and Environmental Engineering, Hubei University of Technology) ;
  • Hu, Bing (School of Chemical and Environmental Engineering, Hubei University of Technology) ;
  • Hu, Chuanqun (School of Chemical and Environmental Engineering, Hubei University of Technology)
  • Received : 2012.08.16
  • Accepted : 2012.11.03
  • Published : 2013.01.20

Abstract

A new heteropolyanion-based ionic ($[Hmim]_5PMo_{10}V_2O_{40}$) was synthesized by the reaction of molybdovanadophosphoric acid ($H_5PMo_{10}O_{40}$) with N-methylimidazole. [$[Hmim]_5PMo_{10}V_2O_{40}$ showed a high catalytic activity in the oxidative desulfurization of sulfur-containing compounds in 1-methylimidazolium tetrafluoroborate ($[Hmim]BF_4$) ionic liquid using 30% aqueous $H_2O_2$ as the oxidant. The catalytic system was of high activity, simplified workup and flexible recyclability. The catalytic oxidation reactivity of sulfur-containing compounds decreased in the order dibenzothiophene (DBT) > 4,6-dimethyldibenzothiophene (4,6-DMDBT) > benzothiophene (BT). The influences of various parameters including reaction time (t) and temperature (T), catalyst dosage, and oxidant to sulfur molar ratio n(O)/n(S) on the desulfurization of model oil were investigated in details. 99.1% of DBT conversion in the model oil was achieved at atmospheric pressure under the optimal conditions: n(O)/n(S) = 4:1, $60^{\circ}C$, 100 min and molar ratio of catalyst to sulfur of 0.062. The ionic liquid can be recycled six times without significant decrease in activity.

Keywords

References

  1. Yazu, K.; Yamamoto, Y.; Furuya, T.; Miki, K.; Ukegawa, K. Energ. Fuel. 2001, 15, 1535. https://doi.org/10.1021/ef0101412
  2. Garcia-Gutierrez, J. L.; Fuentes, G. A.; Hernandez-Teran, M. E.; Murrieta, F.; Navarrete, J.; Jimenez-Cruz, F. Appl. Catal. A: Gen. 2006, 305, 15. https://doi.org/10.1016/j.apcata.2006.01.027
  3. Otsuki, S.; Nonaka, T.; Takashima, N.; Qian, W.; Ishihara, A.; Imai, T.; Kabe, T. Energ. Fuel. 2000, 14, 1232. https://doi.org/10.1021/ef000096i
  4. Babich, I. V.; Moulijn, J. A. Fuel. 2003, 82, 607. https://doi.org/10.1016/S0016-2361(02)00324-1
  5. Collins, F. M.; Lucy, A. R.; Sharp, C. J. Mol. Catal. A: Chem. 1997, 117, 397. https://doi.org/10.1016/S1381-1169(96)00251-8
  6. Lü, H.; Gao, J.; Jiang, Z.; Jing, F.; Yang, Y.; Wang, G.; Li, C. J. Catal. 2006, 239, 369. https://doi.org/10.1016/j.jcat.2006.01.025
  7. Lu, L.; Cheng, S.; Gao, J.; Gao, G.; He, M.-y. Energ. Fuel. 2006, 21, 383.
  8. He, L.; Li, H.; Zhu, W.; Guo, J.; Jiang, X.; Lu, J.; Yan, Y. Ind. Eng. Chem. Res. 2008, 47, 6890. https://doi.org/10.1021/ie800857a
  9. Zhang, J.; Wang, A.; Li, X.; Ma, X. J. Catal. 2011, 279, 269. https://doi.org/10.1016/j.jcat.2011.01.016
  10. Kim, J. H.; Ma, X.; Zhou, A.; Song, C. Catal. Today 2006, 111, 74. https://doi.org/10.1016/j.cattod.2005.10.017
  11. Zhang, S.; Zhang, Q.; Zhang, Z. C. Ind. Eng. Chem. Res. 2003, 43, 614.
  12. Huang, C.; Chen, B.; Zhang, J.; Liu, Z.; Li, Y. Energ. Fuel. 2004, 18, 1862. https://doi.org/10.1021/ef049879k
  13. Soleimani, M.; Bassi, A.; Margaritis, A. Biotechnol. Adv. 2007, 25, 570. https://doi.org/10.1016/j.biotechadv.2007.07.003
  14. Zhu, W.; Huang, W.; Li, H.; Zhang, M.; Jiang, W. Fuel Process Technol. 2011, 92, 1842. https://doi.org/10.1016/j.fuproc.2011.04.030
  15. Ishihara, A.; Wang, D.; Dumeignil, F.; Amano, H.; Qian, E. W.; Kabe, T. Appl. Catal. A: Gen. 2006, 279, 279.
  16. Chan, N. Y.; Lin, T.-Y.; Yen, T. F. Energ. Fuel. 2008, 22, 3326. https://doi.org/10.1021/ef800460g
  17. Lu, H.; Gao, J.; Jiang, Z.; Yang, Y.; Song, B.; Li, C. Chem. Commun. 2007, 00, 150.
  18. Zaykina, R. F.; Zaykin, Y. A.; Yagudin, S. G.; Fahruddinov, I. M. Radiat. Phys. Chem. 2004, 71, 467. https://doi.org/10.1016/j.radphyschem.2004.04.077
  19. Tam, P. S.; Kittrell, J. R.; Eldridge, J. W. Ind. Eng. Chem. Res. 1990, 29, 321. https://doi.org/10.1021/ie00099a002
  20. Lo, W.; Yang, H.; Wei, G. Green Chem. 2003, 5, 639. https://doi.org/10.1039/b305993f
  21. Yazu, K.; Furuya, T.; Miki, K.; Ukegawa, K. Chem. Lett. 2003, 32, 920. https://doi.org/10.1246/cl.2003.920
  22. Komintarachat, C.; Trakarnpruk, W. Ind. Eng. Chem. Res. 2006, 45, 1853. https://doi.org/10.1021/ie051199x
  23. Bosmann, A.; Datsevich, L.; Jess, A.; Lauter, A.; Schmitz, C.; Wasserscheid, P. Chem. Commun. 2001, 2494.
  24. Zhang, S.; Conrad Zhang, Z. Green Chem. 2002, 4, 376. https://doi.org/10.1039/b205170m
  25. Nie, Y.; Li, C.; Sun, A.; Meng, H.; Wang, Z. Energ. Fuel. 2006, 20, 2083. https://doi.org/10.1021/ef060170i
  26. Ko, N. H.; Lee, J. S.; Huh, E. S.; Lee, H.; Jung, K. D.; Kim, H. S.; Cheong, M. Energ. Fuel. 2008, 22, 1687. https://doi.org/10.1021/ef7007369
  27. Zhao, D.; Wang, J.; Zhou, E. Green Chem. 2007, 9, 1219. https://doi.org/10.1039/b706574d
  28. An, Y.; Lu, L.; Cheng, S.; Gao, G. Chin. J. Catal. 2009, 30, 1222.
  29. Li, H.; He, L.; Lu, J.; Zhu, W.; Jiang, X.; Wang, Y.; Yan, Y. Energ. Fuel. 2009, 23, 1354. https://doi.org/10.1021/ef800797n
  30. Ammam, M.; Fransaer, J. J. Electrochem. Soc. 2010, 158, 14.
  31. Dong, T.; Du, J.; Cao, M.; Hu, C. J. Clust. Sci. 2010, 21, 155. https://doi.org/10.1007/s10876-010-0302-1
  32. Leng, Y.; Wang, J.; Zhu, D.; Ren, X.; Ge, H.; Shen, L. Angew. Chem. Int. Edit. 2009, 48, 168. https://doi.org/10.1002/anie.200803567
  33. Leng, Y.; Wang, J.; Zhu, D.; Shen, L.; Zhao, P.; Zhang, M. Chem. Eng. J. 2011, 173, 620. https://doi.org/10.1016/j.cej.2011.08.013
  34. Huang, W. L.; Zhu, W. S.; Li, H. M.; Shi, H.; Zhu, G. P.; Liu, H.; Chen, G. Y. Ind. Eng. Chem. Res. 2010, 49, 8998. https://doi.org/10.1021/ie100234d
  35. Bordoloi, A.; Lefebvre, F.; Halligudi, S. J. Catal. 2007, 247, 166. https://doi.org/10.1016/j.jcat.2007.01.020
  36. Khenkin, A. M.; Weiner, L.; Wang, Y.; Neumann, R. J. Am. Chem. Soc. 2001, 123, 8531. https://doi.org/10.1021/ja004163z
  37. Neumann, R.; Levin, M. J. Org. Chem. 1991, 56, 5707. https://doi.org/10.1021/jo00019a047
  38. Neumann, R.; Khenkin, A. M. Chem. Commun. 2006, 2529.
  39. Tsigdinos, G. A.; Hallada, C. J. Inorg. Chem. 1968, 7, 437. https://doi.org/10.1021/ic50061a009
  40. Ranga Rao, G.; Rajkumar, T.; Varghese, B. Solid State Sci. 2009, 11, 36. https://doi.org/10.1016/j.solidstatesciences.2008.05.017
  41. Bordoloi, A.; Mathew, N. T.; Lefebvre, F.; Halligudi, S. B. Micropor. Mesopor. Mat. 2008, 115, 345. https://doi.org/10.1016/j.micromeso.2008.02.005
  42. Lin, S.; Zheng, Y.; Xu, L.; Wang, S. Chem. J. Chinese. U 2000, 21, 1248.
  43. Zhang, B.; Jiang, Z.; Li, J.; Zhang, Y.; Lin, F.; Liu, Y.; Li, C. J. Catal. 2012, 287, 5. https://doi.org/10.1016/j.jcat.2011.11.003
  44. Alekar, N. A.; Indira, V.; Halligudi, S. B.; Srinivas, D.; Gopinathan, S.; Gopinathan, C. J. Mol. Catal. A: Chem. 2000, 164, 181. https://doi.org/10.1016/S1381-1169(00)00374-5
  45. Arichi, J.; Eternot, M.; Louis, B. Catal. Today 2008, 138, 117. https://doi.org/10.1016/j.cattod.2008.04.036
  46. Mizuno, N.; Kamata, K.; Yamaguchi, K. Catal. Today. 2012, 185, 157. https://doi.org/10.1016/j.cattod.2011.07.007

Cited by

  1. Hybrid Organic-Inorganic Materials Based on Polyoxometalates and Ionic Liquids and Their Application in Catalysis vol.2014, pp.2090-861X, 2014, https://doi.org/10.1155/2014/963792
  2. Deep oxidative desulfurization of dibenzothiophene with molybdovanadophosphoric heteropolyacid-based catalysts vol.39, pp.2, 2014, https://doi.org/10.1007/s11243-013-9792-7
  3. Preparation of Ionic Liquid-modified SBA-15 Doped with Molybdovanadophosphoric Acid for Oxidative Desulfurization vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10336
  4. Oxidative desulfurization of fuels using ionic liquids: A review vol.9, pp.3, 2015, https://doi.org/10.1007/s11705-015-1528-0
  5. Deep oxidative desulfurization of liquid fuels vol.30, pp.4, 2013, https://doi.org/10.1515/revce-2014-0001
  6. Deep oxidative desulfurization of liquid fuels vol.30, pp.4, 2013, https://doi.org/10.1515/revce-2014-0001
  7. Construction of adsorptive nanorods from polyoxometalates and ionic liquid and their adsorption properties for silver ion from AMD vol.74, pp.4, 2013, https://doi.org/10.2166/wst.2016.257
  8. Synthesis of novel magnetic ionic liquids as high efficiency catalysts for extraction-catalytic oxidative desulfurization in fuel oil vol.43, pp.48, 2013, https://doi.org/10.1039/c9nj04015c
  9. Polyoxometalate Dicationic Ionic Liquids as Catalyst for Extractive Coupled Catalytic Oxidative Desulfurization vol.11, pp.3, 2013, https://doi.org/10.3390/catal11030356
  10. Oxidative Desulfurization of Liquid Fuels Using Polyoxometalate-Based Catalysts: A Review vol.35, pp.13, 2013, https://doi.org/10.1021/acs.energyfuels.1c00862