References
- Yazu, K.; Yamamoto, Y.; Furuya, T.; Miki, K.; Ukegawa, K. Energ. Fuel. 2001, 15, 1535. https://doi.org/10.1021/ef0101412
- Garcia-Gutierrez, J. L.; Fuentes, G. A.; Hernandez-Teran, M. E.; Murrieta, F.; Navarrete, J.; Jimenez-Cruz, F. Appl. Catal. A: Gen. 2006, 305, 15. https://doi.org/10.1016/j.apcata.2006.01.027
- Otsuki, S.; Nonaka, T.; Takashima, N.; Qian, W.; Ishihara, A.; Imai, T.; Kabe, T. Energ. Fuel. 2000, 14, 1232. https://doi.org/10.1021/ef000096i
- Babich, I. V.; Moulijn, J. A. Fuel. 2003, 82, 607. https://doi.org/10.1016/S0016-2361(02)00324-1
- Collins, F. M.; Lucy, A. R.; Sharp, C. J. Mol. Catal. A: Chem. 1997, 117, 397. https://doi.org/10.1016/S1381-1169(96)00251-8
- Lü, H.; Gao, J.; Jiang, Z.; Jing, F.; Yang, Y.; Wang, G.; Li, C. J. Catal. 2006, 239, 369. https://doi.org/10.1016/j.jcat.2006.01.025
- Lu, L.; Cheng, S.; Gao, J.; Gao, G.; He, M.-y. Energ. Fuel. 2006, 21, 383.
- He, L.; Li, H.; Zhu, W.; Guo, J.; Jiang, X.; Lu, J.; Yan, Y. Ind. Eng. Chem. Res. 2008, 47, 6890. https://doi.org/10.1021/ie800857a
- Zhang, J.; Wang, A.; Li, X.; Ma, X. J. Catal. 2011, 279, 269. https://doi.org/10.1016/j.jcat.2011.01.016
- Kim, J. H.; Ma, X.; Zhou, A.; Song, C. Catal. Today 2006, 111, 74. https://doi.org/10.1016/j.cattod.2005.10.017
- Zhang, S.; Zhang, Q.; Zhang, Z. C. Ind. Eng. Chem. Res. 2003, 43, 614.
- Huang, C.; Chen, B.; Zhang, J.; Liu, Z.; Li, Y. Energ. Fuel. 2004, 18, 1862. https://doi.org/10.1021/ef049879k
- Soleimani, M.; Bassi, A.; Margaritis, A. Biotechnol. Adv. 2007, 25, 570. https://doi.org/10.1016/j.biotechadv.2007.07.003
- Zhu, W.; Huang, W.; Li, H.; Zhang, M.; Jiang, W. Fuel Process Technol. 2011, 92, 1842. https://doi.org/10.1016/j.fuproc.2011.04.030
- Ishihara, A.; Wang, D.; Dumeignil, F.; Amano, H.; Qian, E. W.; Kabe, T. Appl. Catal. A: Gen. 2006, 279, 279.
- Chan, N. Y.; Lin, T.-Y.; Yen, T. F. Energ. Fuel. 2008, 22, 3326. https://doi.org/10.1021/ef800460g
- Lu, H.; Gao, J.; Jiang, Z.; Yang, Y.; Song, B.; Li, C. Chem. Commun. 2007, 00, 150.
- Zaykina, R. F.; Zaykin, Y. A.; Yagudin, S. G.; Fahruddinov, I. M. Radiat. Phys. Chem. 2004, 71, 467. https://doi.org/10.1016/j.radphyschem.2004.04.077
- Tam, P. S.; Kittrell, J. R.; Eldridge, J. W. Ind. Eng. Chem. Res. 1990, 29, 321. https://doi.org/10.1021/ie00099a002
- Lo, W.; Yang, H.; Wei, G. Green Chem. 2003, 5, 639. https://doi.org/10.1039/b305993f
- Yazu, K.; Furuya, T.; Miki, K.; Ukegawa, K. Chem. Lett. 2003, 32, 920. https://doi.org/10.1246/cl.2003.920
- Komintarachat, C.; Trakarnpruk, W. Ind. Eng. Chem. Res. 2006, 45, 1853. https://doi.org/10.1021/ie051199x
- Bosmann, A.; Datsevich, L.; Jess, A.; Lauter, A.; Schmitz, C.; Wasserscheid, P. Chem. Commun. 2001, 2494.
- Zhang, S.; Conrad Zhang, Z. Green Chem. 2002, 4, 376. https://doi.org/10.1039/b205170m
- Nie, Y.; Li, C.; Sun, A.; Meng, H.; Wang, Z. Energ. Fuel. 2006, 20, 2083. https://doi.org/10.1021/ef060170i
- Ko, N. H.; Lee, J. S.; Huh, E. S.; Lee, H.; Jung, K. D.; Kim, H. S.; Cheong, M. Energ. Fuel. 2008, 22, 1687. https://doi.org/10.1021/ef7007369
- Zhao, D.; Wang, J.; Zhou, E. Green Chem. 2007, 9, 1219. https://doi.org/10.1039/b706574d
- An, Y.; Lu, L.; Cheng, S.; Gao, G. Chin. J. Catal. 2009, 30, 1222.
- Li, H.; He, L.; Lu, J.; Zhu, W.; Jiang, X.; Wang, Y.; Yan, Y. Energ. Fuel. 2009, 23, 1354. https://doi.org/10.1021/ef800797n
- Ammam, M.; Fransaer, J. J. Electrochem. Soc. 2010, 158, 14.
- Dong, T.; Du, J.; Cao, M.; Hu, C. J. Clust. Sci. 2010, 21, 155. https://doi.org/10.1007/s10876-010-0302-1
- Leng, Y.; Wang, J.; Zhu, D.; Ren, X.; Ge, H.; Shen, L. Angew. Chem. Int. Edit. 2009, 48, 168. https://doi.org/10.1002/anie.200803567
- Leng, Y.; Wang, J.; Zhu, D.; Shen, L.; Zhao, P.; Zhang, M. Chem. Eng. J. 2011, 173, 620. https://doi.org/10.1016/j.cej.2011.08.013
- Huang, W. L.; Zhu, W. S.; Li, H. M.; Shi, H.; Zhu, G. P.; Liu, H.; Chen, G. Y. Ind. Eng. Chem. Res. 2010, 49, 8998. https://doi.org/10.1021/ie100234d
- Bordoloi, A.; Lefebvre, F.; Halligudi, S. J. Catal. 2007, 247, 166. https://doi.org/10.1016/j.jcat.2007.01.020
- Khenkin, A. M.; Weiner, L.; Wang, Y.; Neumann, R. J. Am. Chem. Soc. 2001, 123, 8531. https://doi.org/10.1021/ja004163z
- Neumann, R.; Levin, M. J. Org. Chem. 1991, 56, 5707. https://doi.org/10.1021/jo00019a047
- Neumann, R.; Khenkin, A. M. Chem. Commun. 2006, 2529.
- Tsigdinos, G. A.; Hallada, C. J. Inorg. Chem. 1968, 7, 437. https://doi.org/10.1021/ic50061a009
- Ranga Rao, G.; Rajkumar, T.; Varghese, B. Solid State Sci. 2009, 11, 36. https://doi.org/10.1016/j.solidstatesciences.2008.05.017
- Bordoloi, A.; Mathew, N. T.; Lefebvre, F.; Halligudi, S. B. Micropor. Mesopor. Mat. 2008, 115, 345. https://doi.org/10.1016/j.micromeso.2008.02.005
- Lin, S.; Zheng, Y.; Xu, L.; Wang, S. Chem. J. Chinese. U 2000, 21, 1248.
- Zhang, B.; Jiang, Z.; Li, J.; Zhang, Y.; Lin, F.; Liu, Y.; Li, C. J. Catal. 2012, 287, 5. https://doi.org/10.1016/j.jcat.2011.11.003
- Alekar, N. A.; Indira, V.; Halligudi, S. B.; Srinivas, D.; Gopinathan, S.; Gopinathan, C. J. Mol. Catal. A: Chem. 2000, 164, 181. https://doi.org/10.1016/S1381-1169(00)00374-5
- Arichi, J.; Eternot, M.; Louis, B. Catal. Today 2008, 138, 117. https://doi.org/10.1016/j.cattod.2008.04.036
- Mizuno, N.; Kamata, K.; Yamaguchi, K. Catal. Today. 2012, 185, 157. https://doi.org/10.1016/j.cattod.2011.07.007
Cited by
- Hybrid Organic-Inorganic Materials Based on Polyoxometalates and Ionic Liquids and Their Application in Catalysis vol.2014, pp.2090-861X, 2014, https://doi.org/10.1155/2014/963792
- Deep oxidative desulfurization of dibenzothiophene with molybdovanadophosphoric heteropolyacid-based catalysts vol.39, pp.2, 2014, https://doi.org/10.1007/s11243-013-9792-7
- Preparation of Ionic Liquid-modified SBA-15 Doped with Molybdovanadophosphoric Acid for Oxidative Desulfurization vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10336
- Oxidative desulfurization of fuels using ionic liquids: A review vol.9, pp.3, 2015, https://doi.org/10.1007/s11705-015-1528-0
- Deep oxidative desulfurization of liquid fuels vol.30, pp.4, 2013, https://doi.org/10.1515/revce-2014-0001
- Deep oxidative desulfurization of liquid fuels vol.30, pp.4, 2013, https://doi.org/10.1515/revce-2014-0001
- Construction of adsorptive nanorods from polyoxometalates and ionic liquid and their adsorption properties for silver ion from AMD vol.74, pp.4, 2013, https://doi.org/10.2166/wst.2016.257
- Synthesis of novel magnetic ionic liquids as high efficiency catalysts for extraction-catalytic oxidative desulfurization in fuel oil vol.43, pp.48, 2013, https://doi.org/10.1039/c9nj04015c
- Polyoxometalate Dicationic Ionic Liquids as Catalyst for Extractive Coupled Catalytic Oxidative Desulfurization vol.11, pp.3, 2013, https://doi.org/10.3390/catal11030356
- Oxidative Desulfurization of Liquid Fuels Using Polyoxometalate-Based Catalysts: A Review vol.35, pp.13, 2013, https://doi.org/10.1021/acs.energyfuels.1c00862