DOI QR코드

DOI QR Code

Preparation of Ruthenium Incorporated Heterogeneous Catalysts Using Hydroxyapatite as Catalytic Supports for Aerobic Oxidation of Alcohols

  • Kim, Sohee (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Jung, Jong-Hwa (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Kim, Dong-Hee (Department of Orthopaedic Surgery, School of Medicine, Gyeongsang National University Hospital) ;
  • Woo, Dong Kyun (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Park, Joon B. (Institute of Fusion Science, Department of Chemistry Education, Chonbuk National University) ;
  • Choi, Myong Yong (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Kwon, Ki-Young (Department of Chemistry and RINS, Gyeongsang National University)
  • Received : 2012.10.23
  • Accepted : 2012.11.02
  • Published : 2013.01.20

Abstract

Three different kinds of hydroxyapatites (HAPs) having different sizes and compositions are prepared by hydrothermal and molten salt syntheses. Using the ion exchange reactions, ruthenium ions are incorporated on the surface of HAPs. The crystallinity, morphology and ruthenium contents are investigated by XRD, SEM, TEM and ICP. We found that smaller size of HAP having large amounts of ruthenium under ion exchange reaction shows higher catalytic activity for aerobic oxidation of alcohols.

Keywords

References

  1. Okun, N. M.; Anderson, T. M.; Hill, C. L. J. Am. Chem. Soc. 2003, 125, 3194. https://doi.org/10.1021/ja0267223
  2. Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed. 2003, 42, 1480. https://doi.org/10.1002/anie.200250779
  3. Jorgensen, B.; Egholm Christiansen, S.; Dahl Thomsen, M. L.; Christensen, C. H. J. Catalysis 2007, 251, 332. https://doi.org/10.1016/j.jcat.2007.08.004
  4. Kay, M. I.; Young, R. A.; Posner, A. S. Nature 1964, 204, 1050. https://doi.org/10.1038/2041050a0
  5. Kim, H. M.; Himeno, T.; Kawashita, M.; Kokubo, T.; Nakamura, T. J. R. Soc. Interface 2004, 1, 17. https://doi.org/10.1098/rsif.2004.0003
  6. Watanabe, J.; Akashi, M. Biomacromolecules 2006, 7, 3008. https://doi.org/10.1021/bm060488h
  7. Kwon, K. Y.; Wang, E.; Chung, A.; Chang, N.; Saiz, E.; Choe, U. J.; Koobatian, M.; Lee, S. W. Langmuir 2008, 24, 11063. https://doi.org/10.1021/la801735c
  8. Rendon-Angeles, J. C.; Yanagisawa, K.; Ishizawa, N.; Oishi, S. Chem. Mater. 2000, 12, 2143. https://doi.org/10.1021/cm990797x
  9. Kwon, K. Y.; Wang, E.; Chung, A.; Chang, N.; Lee, S. W. J. Phys. Chem. C 2009, 113, 3369.
  10. Kwon, K. Y.; Wang, E.; Chang, N.; Lee, S. W. Langmuir 2009, 25, 7205. https://doi.org/10.1021/la900824n
  11. Xu, Y.; Schwartz, F. W.; Traina, S. J. Environ. Sci. Tech. 1994, 28, 1472. https://doi.org/10.1021/es00057a015
  12. Matsunaga, K.; Inamori, H.; Murata, H. Phys. Rev. B 2008, 78.
  13. Corami, A.; Mignardi, S.; Ferrini, V. J. Colloid Interf. Sci. 2008, 317, 402. https://doi.org/10.1016/j.jcis.2007.09.075
  14. Reichert, J.; Binner, J. G. P. J. Mater. Sci. 1996, 31, 1231. https://doi.org/10.1007/BF00353102
  15. Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2004, 126, 10657. https://doi.org/10.1021/ja0488683
  16. Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2000, 122, 7144. https://doi.org/10.1021/ja001325i
  17. Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2003, 125, 11460. https://doi.org/10.1021/ja0302533
  18. Tas, A. C. J. Am. Ceram. Soc. 2001, 84, 295.
  19. Nakata, K.; Liu, B.; Ishikawa, Y.; Sakai, M.; Saito, H.; Ochiai, T.; Sakai, H.; Murakami, T.; Abe, M.; Takagi, K.; Fujishima, A. Chem. Lett. 2011, 40, 1107. https://doi.org/10.1246/cl.2011.1107
  20. Zeng, H.; Chittur, K. K.; Lacefield, W. R. Biomaterials 1999, 20, 443. https://doi.org/10.1016/S0142-9612(98)00190-2
  21. Cazalbou, S.; Eichert, D.; Ranz, X.; Drouet, C.; Combes, C.; Harmand, M. F.; Rey, C. J. Mate. Sci. 2005, 16, 405.
  22. Mori, K.; Tano, M.; Mizugaki, T.; Ebitani, K.; Kaneda, K. New J. Chem. 2002, 26, 1536. https://doi.org/10.1039/b205498c
  23. Mori, K.; Mitani, Y.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Chem. Comm. 2005, 3331.
  24. Hara, T.; Kaneta, T.; Mori, K.; Mitsudome, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Green Chem. 2007, 9, 1246. https://doi.org/10.1039/b704912a

Cited by

  1. Synthesis and Morphological Characterization of Calcium Phosphates Prepared under Different NaOH Concentrations vol.35, pp.8, 2014, https://doi.org/10.5012/bkcs.2014.35.8.2241
  2. Ruthenium-Incorporated Hydroxyapatites for the Oxidation of Alcohols and Amines Using Molecular Oxygen as an Oxidant vol.36, pp.1, 2014, https://doi.org/10.1002/bkcs.10006
  3. Ultraviolet Blocking Material Based on Silver-doped Hydroxyapatite vol.27, pp.6, 2016, https://doi.org/10.14478/ace.2016.1095
  4. A Silver-doped Hydroxyapatite for an Active Sunscreen Material vol.37, pp.9, 2016, https://doi.org/10.1002/bkcs.10902
  5. 구리가 도입된 수산화인회석 촉매를 이용한 탈수반응 연구 vol.62, pp.6, 2013, https://doi.org/10.5012/jkcs.2018.62.6.423
  6. 양이온성 계면활성제를 이용한 수산화인회석 합성 vol.30, pp.5, 2019, https://doi.org/10.14478/ace.2019.1071