DOI QR코드

DOI QR Code

Spectroscopic Properties of Flavonoids in Various Aqueous-Organic Solvent Mixtures

  • Park, Hyoung-Ryun (Department of Chemistry and Research Institute of Basic Science, Chonnam National University) ;
  • Daun, Yu (Department of Chemistry and Research Institute of Life Science, Gyeongsang National University) ;
  • Park, Jong Keun (Department of Chemical Education and Research Institute of Life Science, Gyeongsang National University) ;
  • Bark, Ki-Min (Department of Chemical Education and Research Institute of Life Science, Gyeongsang National University)
  • Received : 2012.09.17
  • Accepted : 2012.11.01
  • Published : 2013.01.20

Abstract

The characteristic fluorescence properties of quercetin (QCT) and apigenin (API) were studied in various $CH_3OH-H_2O$ and $CH_3CN-H_2O$ mixed solvents. The structure of QCT is completely planar. API is not planar at the ground state but becomes nearly planar at the excited state. If the molecules are excited to the $S_1$ state in organic solvents, QCT exhibits no fluorescence due to excited state intramolecular proton transfer (ESIPT) between the -OH and the carbonyl oxygen, but API shows significant fluorescence because ESIPT occurs slowly. If the molecules are excited to the $S_2$ state, both QCT and API exhibit strong $S_2{\rightarrow}S_o$ emission without any dual fluorescence. As the $H_2O$ composition of both solvents increases, the fluorescence intensity decreases rapidly due to the intermolecular hydrogen bonding interaction. The theoretical calculation further supports these results. The change in fluorescence properties as a function of the solvatochromic parameters was also studied.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Middleton, E., Jr.; Kandaswami, C. The Impact of Plant Flavonoids on Mammalian Biology; Harborne, J. B., Ed.; Chapman and Hall: London, UK, 1994; p 619.
  2. Iwashina, T. J. Plant Res. 2000, 113, 287. https://doi.org/10.1007/PL00013940
  3. Butkoviæ, V.; Klasinc, V.; Bors, W. J. Agric. Food Chem. 2004, 52, 2816. https://doi.org/10.1021/jf049880h
  4. Exarchou, V.; Nenadis, N.; Tsimidou, M.; Gerothanassis, I. P.; Troganis, A.; Boskou, D. J. Agric. Food Chem. 2002, 50, 5294. https://doi.org/10.1021/jf020408a
  5. Miyake, Y.; Yamamoto, K.; Morimitsu, Y.; Osawa, T. J. Agric. Food. Chem. 1997, 45, 4619. https://doi.org/10.1021/jf970498x
  6. Jovanovic, S. V.; Steenken, S.; Tosic, M.; Marjanovic, B.; Simic, M. G. J. Am. Chem. Soc. 1994, 116, 4846. https://doi.org/10.1021/ja00090a032
  7. Lapouge, C.; Dangleterre, L.; Cornard, J. P. J. Phys. Chem. 2006, 110, 12494. https://doi.org/10.1021/jp064362q
  8. Li, Y. Q.; Zhou, F. C.; Gao, F.; Bian, J. S.; Shan, F. J. Agric. Food Chem. 2009, 57, 11463. https://doi.org/10.1021/jf903083h
  9. Liu, W.; Rong, G. J. Coll. Interf. Sci. 2006, 302, 625. https://doi.org/10.1016/j.jcis.2006.06.045
  10. Cornard, J. P.; Merlin, J. C. J. Inorg. Biochem. 2002, 92, 19. https://doi.org/10.1016/S0162-0134(02)00469-5
  11. Baranac, J. M.; Petranovi , N. A.; Dimitri -Markovi , M. D. J. M. J. Agric. Food Chem. 1997, 45, 1694. https://doi.org/10.1021/jf9606114
  12. Gutierrez, A. C.; Gehlen, M. H. Spectrochim. Acta A 2002, 58, 83. https://doi.org/10.1016/S1386-1425(01)00515-7
  13. Rossi, M.; Rickles, L. F.; Halpin, W. A. Bioorgan. Chem. 1986, 14, 55. https://doi.org/10.1016/0045-2068(86)90018-0
  14. Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Theor. Chem. Acc. 2004, 111, 210. https://doi.org/10.1007/s00214-003-0544-1
  15. Falkovskaia, E.; Sengupta, P. K.; Kasha, M. Chem. Phys. Lett. 1998, 297, 109. https://doi.org/10.1016/S0009-2614(98)01112-9
  16. Sengupta, P. K.; Kasha, M. Chem. Phys. Lett. 1979, 68, 382. https://doi.org/10.1016/0009-2614(79)87221-8
  17. Smith, G. J.; Markham, K. R. J. Photochem. Photobiol. A 1998, 118, 99. https://doi.org/10.1016/S1010-6030(98)00354-2
  18. Hollman, P. C. H.; van Trijp, J. M. P.; Buysman, M. N. C. P. Anal. Chem. 1996, 68, 3511. https://doi.org/10.1021/ac960461w
  19. Liu, H. B.; Daun, Y.; Shin, S. C.; Park, H. R.; Park, J. K.; Bark, K. M. Photochem. Photobiol. 2009, 85, 934. https://doi.org/10.1111/j.1751-1097.2009.00550.x
  20. Park, H. R.; Liu, H. B.; Shin, S. C.; Park, J. K.; Bark, K. M. Bull. Korean Chem. Soc. 2011, 32, 981.
  21. Navarro-Nunez, L.; Lozano, M. L.; Palomo, M.; Martinez, C.; Vicente, V.; Castillo, J.; Benavente-Garcia, O.; Diaz-Ricart, M.; Escolar, G.; Rivera, J. J. Agric. Food Chem. 2008, 56, 2970. https://doi.org/10.1021/jf0723209
  22. Yuan, J. L.; Liu, H.; Kang, X.; Lv, Z.; Zou, G. L. J. Mole. Struct. 2008, 891, 333. https://doi.org/10.1016/j.molstruc.2008.04.017
  23. Yuan, J. L.; Iv, Z.; Liu, Z. G.; Hu, Z.; Zou, G. L. J. Photochem. Photobiol. A 2007, 191, 104. https://doi.org/10.1016/j.jphotochem.2007.04.010
  24. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry; VCH, Weinheim, Germany, 1988; p 372.
  25. Eaton, D. F. Reference Compounds for Fluorescence Measurement; IUPAC Organic Chemistry Division, Washington DC, USA. 1987; p 1.
  26. Frish, M. J.; Trucks, G. W.; Head-Gordon, M. H.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C. R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 03; Gaussian Inc., Pittsburgh, PA, USA. 2003.
  27. Zsila, F.; Bikádi, Z.; Simonyi, M. Biochem. Pharmacol. 2003, 65, 447. https://doi.org/10.1016/S0006-2952(02)01521-6
  28. Favaro, G.; Clementi, C.; Romani, A.; Vickackaite, V. J. Fluoresc. 2007, 17, 707. https://doi.org/10.1007/s10895-007-0222-0
  29. Hochstrasser, R. M.; Marzzacco, C. J. Chem. Phys. 1968, 49, 971. https://doi.org/10.1063/1.1670262
  30. Cornard, J. P.; Boudet, A. C.; Merlin, J. C. J. Mol. Struct. 1999, 508, 37. https://doi.org/10.1016/S0022-2860(99)00004-6
  31. Cornard, J. P.; Merlin, J. C.; Boudet, A. C.; Vrielynck, L. Biospect. 1997, 3, 183. https://doi.org/10.1002/(SICI)1520-6343(1997)3:3<183::AID-BSPY2>3.0.CO;2-7
  32. Mendoza-Wilson, A. M.; Glossman-Mitnik, D. J. Mol. Struct. (Theochem) 2004, 681, 71. https://doi.org/10.1016/j.theochem.2004.04.054
  33. Saskia, A. B.; van Acker, E.; de Groot, M. J.; van den Berg, D. J.; Tromp, M. N. J. L.; den Kelder, G. D. O.; van der Vijgh, W. J. F.; Bast, A. Chem. Res. Toxicol. 1996, 9, 1305. https://doi.org/10.1021/tx9600964
  34. Cody, V.; Luft, J. R. J. Mol. Struct. 1994, 317, 89. https://doi.org/10.1016/0022-2860(93)07867-V
  35. Amat, A.; Clementi, C.; De Angelis, F.; Sgamellotti, A.; Fantacci, S. J. Phys. Chem. A 2009, 113, 15118. https://doi.org/10.1021/jp9052538
  36. Matías Funes, N.; Correa, M.; Silber, J. J.; Biasutti, M. A. Photochem. Photobiol. 2007, 83, 486. https://doi.org/10.1562/2006-08-08-RA-1000
  37. Martinez, M. L.; Studer, S. L.; Chou, P. T. J. Am. Chem. Soc. 1991, 113, 5881. https://doi.org/10.1021/ja00015a063

Cited by

  1. Spectroscopic Properties of Quercetin in AOT Reverse Micelles vol.35, pp.3, 2014, https://doi.org/10.5012/bkcs.2014.35.3.828
  2. O Mixed Solvents vol.91, pp.2, 2015, https://doi.org/10.1111/php.12407
  3. Spectroscopic Properties of Apigenin in Various Bulk Solutions and Aerosol-OT Reverse Micelles vol.37, pp.9, 2016, https://doi.org/10.1002/bkcs.10879
  4. Fluorescent natural products as probes and tracers in biology vol.34, pp.2, 2017, https://doi.org/10.1039/C6NP00111D
  5. Steady state and time resolved laser-induced fluorescence of garlic plants treated with titanium dioxide nanoparticles vol.51, pp.1, 2018, https://doi.org/10.1080/00387010.2017.1417871
  6. Spectroscopic Properties of the Quercetin-Divalent Metal Complexes in Hydro-Organic Mixed Solvent vol.39, pp.8, 2018, https://doi.org/10.1002/bkcs.11532
  7. (family- Rutaceae) pp.1478-6427, 2019, https://doi.org/10.1080/14786419.2018.1499630
  8. Cover BKCS 9/2016 vol.37, pp.9, 2013, https://doi.org/10.1002/bkcs.10513
  9. Analysis of Fluorescence Spectra of Citrus Polymethoxylated Flavones and Their Incorporation into Mammalian Cells vol.66, pp.28, 2013, https://doi.org/10.1021/acs.jafc.8b02052
  10. Binding of Clitoria ternatea L. flower extract with α-amylase simultaneously monitored at two wavelengths using a photon streaming time-resolved fluorescence approach vol.211, pp.None, 2013, https://doi.org/10.1016/j.saa.2018.11.062
  11. Peptoid Helix Displaying Flavone and Porphyrin: Synthesis and Intramolecular Energy Transfer vol.85, pp.3, 2020, https://doi.org/10.1021/acs.joc.9b02358
  12. Potential of Ageratum conyzoides in Inhibiting Nitric Oxide Synthase vol.24, pp.8, 2021, https://doi.org/10.3923/pjbs.2021.840.846
  13. Sustainable Hues: Exploring the Molecular Palette of Biowaste Dyes through LC-MS Metabolomics vol.26, pp.21, 2013, https://doi.org/10.3390/molecules26216645