DOI QR코드

DOI QR Code

An Efficient Synthesis of Phospha-Morita-Baylis-Hillman Adducts via Michaelis-Arbuzov Reaction of the DABCO Salt of Morita-Baylis-Hillman Bromide

  • Kim, Sung Hwan (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Se Hee (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Lee, Hyun Seung (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Jae Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2012.10.03
  • Accepted : 2012.10.19
  • Published : 2013.01.20

Abstract

An efficient synthesis of phospha-Morita-Baylis-Hillman adducts was carried out in good yields via the Michaelis-Arbuzov reaction of the DABCO salts of MBH bromides. Instead of a DABCO salt, a phosphonium salt could be effectively used for some substrates which showed some problems in the presence of DABCO.

Keywords

References

  1. Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415. https://doi.org/10.1021/cr00044a004
  2. Rajeshwaran, G. G.; Nandakumar, M.; Sureshbabu, R.; Mohanakrishnan, A. K. Org. Lett. 2011, 13, 1270 https://doi.org/10.1021/ol1029436
  3. Jansa, P.; Holy, A.; Dracinsky, M.; Baszczynski, O.; Cesnek, M.; Janeba, Z. Green Chem. 2011, 13, 882. https://doi.org/10.1039/c0gc00509f
  4. Matveeva, E. V.; Odinets, I. L.; Kozlov, V. A.; Shaplov, A. S.; Mastryukova, T. A. Tetrahedron Lett. 2006, 47, 7645. https://doi.org/10.1016/j.tetlet.2006.08.050
  5. Lewis, E. S.; Hamp, D. J. Org. Chem. 1983, 48, 2025. https://doi.org/10.1021/jo00160a017
  6. Basavaiah, D.; Pandiaraju, S. Tetrahedron 1996, 52, 2261. https://doi.org/10.1016/0040-4020(95)01055-6
  7. Das, B.; Bhunia, N.; Damodar, K. Synth. Commun. 2012, 42, 2479. https://doi.org/10.1080/00397911.2011.561396
  8. Janecki, T.; Bodalski, R. Synthesis 1990, 799.
  9. Badkar, P. A.; Rath, N. P.; Spilling, C. D. Org. Lett. 2007, 9, 3619. https://doi.org/10.1021/ol701500s
  10. Ho, C.-Y.; Chan, C.- W.; Wo, S.-K.; Zuo, Z.; Chan, L.-Y. Org. Biomol. Chem. 2010, 8, 3480. https://doi.org/10.1039/c001660h
  11. Muthiah, C.; Senthil Kumar, K.; Vittal, J. J.; Kumara Swamy, K. C. Synlett 2002, 1787.
  12. McFadden, H. G.; Harris, R. L. N.; Jenkins, C. L. D. Aust. J. Chem. 1989, 42, 301. https://doi.org/10.1071/CH9890301
  13. Yang, L.; Xu, L.; Yu, C. Phosphorous, Sulfur, and Silicon 2009, 184, 2049. https://doi.org/10.1080/10426500802418545
  14. Gavara, L.; Petit, C.; Montchamp. J.-L. Tetrahedron Lett. 2012, 53, 5000. https://doi.org/10.1016/j.tetlet.2012.07.019
  15. Cohen, R. J.; Fox, D. L.; Eubank, J. F.; Salvatore, R. N. Tetrahedron Lett. 2003, 44, 8617. https://doi.org/10.1016/j.tetlet.2003.09.045
  16. Beji, F.; Lebreton, J.; Villieras, J.; Amri, H. Synth. Commun. 2002, 32, 3273. https://doi.org/10.1081/SCC-120014031
  17. Deng, H.-P.; Shi, M. Eur. J. Org. Chem. 2012, 183.
  18. Balaraman, E.; Srinivas, V.; Kumara Swamy, K. C. Tetrahedron 2009, 65, 7603. https://doi.org/10.1016/j.tet.2009.06.096
  19. Li, J.-N.; Liu, L.; Fu, Y.; Guo, Q.-X. Tetrahedron 2006, 62, 4453. https://doi.org/10.1016/j.tet.2006.02.049
  20. Hasnik, Z.; Pohl, R.; Hocek, M. Tetrahedron Lett. 2010, 51, 2464. https://doi.org/10.1016/j.tetlet.2010.02.167
  21. Megati, S.; Phadtare, S.; Zemlicka, J. J. Org. Chem. 1992, 57, 2320. https://doi.org/10.1021/jo00034a025
  22. Das, B.; Damodar, K.; Bhunia, N.; Shashikanth, B. Tetrahedron Lett. 2009, 50, 2072. https://doi.org/10.1016/j.tetlet.2009.02.132
  23. Basavaiah, D.; Reddy, K. R.; Kumaragurubaran, N. Nat. Protoc. 2007, 2, 2665. https://doi.org/10.1038/nprot.2007.369
  24. Das, B.; Banerjee, J.; Ravindranath, N. Tetrahedron 2004, 60, 8357. https://doi.org/10.1016/j.tet.2004.07.022
  25. Gowrisankar, S.; Kim, S. H.; Kim, J. N. Bull. Korean Chem. Soc. 2009, 30, 726 https://doi.org/10.5012/bkcs.2009.30.3.726
  26. Ferreira, M.; Fernandes, L.; Sa, M. M. J. Braz. Chem. Soc. 2009, 20, 564. https://doi.org/10.1590/S0103-50532009000300023
  27. Fernandes, L.; Bortoluzzi, A. J.; Sa, M. M. Tetrahedron 2004, 60, 9983. https://doi.org/10.1016/j.tet.2004.08.018
  28. Basavaiah, D.; Hyma, R. S.; Padmaja, K.; Krishnamacharyulu, M. Tetrahedron 1999, 55, 6971. https://doi.org/10.1016/S0040-4020(99)00326-9
  29. Yadav, J. S.; Subba Reddy, B. V.; Madan, C. New J. Chem. 2001, 25, 1114. https://doi.org/10.1039/b103850h
  30. Kim, S. H.; Kim, S. H.; Lee, H. J.; Kim, J. N. Bull. Korean Chem. Soc. 2012, 33, 2079. https://doi.org/10.5012/bkcs.2012.33.6.2079
  31. Chung, Y. M.; Gong, J. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2001, 42, 9023. https://doi.org/10.1016/S0040-4039(01)01971-2
  32. Kim, J. N.; Lee, H. J.; Lee, K. Y.; Gong, J. H. Synlett 2002, 173.
  33. Gong, J. H.; Kim, H. R.; Ryu, E. K.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 789. https://doi.org/10.5012/bkcs.2002.23.6.789
  34. Baidya, M.; Remennikov, G. Y.; Mayer, P.; Mayr, H. Chem. Eur. J. 2010, 16, 1365. https://doi.org/10.1002/chem.200902487
  35. Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. Angew. Chem. Int. Ed. 2009, 48, 5737. https://doi.org/10.1002/anie.200902093
  36. Li, J.; Wang, X.; Zhang, Y. Tetrahedron Lett. 2005, 46, 5233. https://doi.org/10.1016/j.tetlet.2005.05.107
  37. Singh, V.; Yadav, G. P.; Maulik, P. R.; Batra, S. Tetrahedron 2008, 64, 2979. https://doi.org/10.1016/j.tet.2008.01.074
  38. Kiddle, J. J.; Babler, J. H. J. Org. Chem. 1993, 58, 3572. https://doi.org/10.1021/jo00065a021
  39. Modro, A. M.; Modro, T. A. Can. J. Chem. 1988, 66, 1541. https://doi.org/10.1139/v88-250
  40. Solberghe, G. F.; Marko, I. E. Tetrahedron Lett. 2002, 43, 5061. https://doi.org/10.1016/S0040-4039(02)01001-8
  41. Shen, R.; Jiang, X.; Ye, W.; Song, X.; Liu, L.; Lao, X.; Wu, C. Tetrahedron 2011, 67, 5610. https://doi.org/10.1016/j.tet.2011.05.104
  42. Konno, T.; Kinugawa, R.; Morigaki, A.; Ishihara, T. J. Org. Chem. 2009, 74, 8456. https://doi.org/10.1021/jo9017028
  43. Quntar, A. A. A.; Melman, A.; Srebnik, M. J. Org. Chem. 2002, 67, 3769. https://doi.org/10.1021/jo016403e
  44. Martelli, G.; Orena, M.; Rinaldi, S. Eur. J. Org. Chem. 2011, 7199.
  45. Park, H.; Cho, C.-W.; Krische, M. J. J. Org. Chem. 2006, 71, 7892. https://doi.org/10.1021/jo061218s
  46. Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org. Lett. 2004, 6, 1337. https://doi.org/10.1021/ol049600j
  47. Cho, C.-W.; Krische, M. J. Angew. Chem. Int. Ed. 2004, 43, 6689. https://doi.org/10.1002/anie.200461381
  48. Kwon S.-H.; Cho, C.-W. Bull. Korean Chem. Soc. 2008, 29, 1835. https://doi.org/10.5012/bkcs.2008.29.9.1835
  49. Hoffmann, H. M. R.; Rabe, J. Angew. Chem. Int. Ed. 1983, 22, 795. https://doi.org/10.1002/anie.198307951
  50. Poly, W.; Schomburg, D.; Hoffmann, H. M. R. J. Org. Chem. 1988, 53, 3701. https://doi.org/10.1021/jo00251a009
  51. Basavaiah, D.; Pandiaraju, S.; Sarma, P. K. S. Tetrahedron Lett. 1994, 35, 4227. https://doi.org/10.1016/S0040-4039(00)73158-3
  52. Spino, C.; Crawford, J.; Cui, Y.; Gugelchuk, M. J. Chem. Soc., Perkin Trans. 2 1998, 1499.
  53. Xu, S.; Chen, R.; Qin, Z.; Wu, G.; He, Z. Org. Lett. 2012, 14, 996. https://doi.org/10.1021/ol2032569

Cited by

  1. ChemInform Abstract: An Efficient Synthesis of Phospha-Morita-Baylis-Hillman Adducts via Michaelis-Arbuzov Reaction of the DABCO Salt of Morita-Baylis-Hillman Bromide. vol.44, pp.40, 2013, https://doi.org/10.1002/chin.201340197
  2. Probing the Mechanism of Allylic Substitution of Morita-Baylis-Hillman Acetates (MBHAs) by using the Silyl Phosphonite Paradigm: Scope and Applications of a Versatile Transformation vol.21, pp.8, 2015, https://doi.org/10.1002/chem.201405626
  3. Synthesis of a Series of γ-Keto Allyl Phosphonates vol.81, pp.5, 2013, https://doi.org/10.1021/acs.joc.5b02106