DOI QR코드

DOI QR Code

Nucleophilic Substitution Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Butane-2,3-dione Monoximate and 4-Chlorophenoxide: Origin of the α-Effect

  • Kim, Min-Young (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Min, Se-Won (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2012.08.19
  • Accepted : 2012.10.02
  • Published : 2013.01.20

Abstract

Second-order rate constants have been measured spectrophotometrically for the reactions of phenyl Y-substituted-phenyl carbonates 7a-g with butane-2,3-dione monoximate ($Ox^-$) in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The ${\alpha}$-nucleophile $Ox^-$ is 53-95 times more reactive than the corresponding normal-nucleophile 4-$ClPhO^-$ toward 7a-g, indicating that the ${\alpha}$-effect is operative. The magnitude of the ${\alpha}$-effect (e.g., the $k_{Ox^-}/k_{4-ClPhO^-}$ ratio) is independent of the electronic nature of the substituent Y. The cause of the ${\alpha}$-effect for the reactions of 7a-g has been suggested to be ground-state (GS) effect rather than transition-state (TS) stabilization through a six-membered cyclic TS, in which $Ox^-$ behaves a general acid/base catalyst. This idea is further supported by the result that $OH^-$ exhibits negative deviation from the linear Br${\o}$nsted-type plot composed of a series of aryloxides, while $Ox^-$ deviates positively from the linearity. Differential solvation of the GS of $Ox^-$ and 4-$ClPhO^-$ has been suggested to be responsible for the ${\alpha}$-effect exerted by $Ox^-$.

Keywords

References

  1. Edwards, J. O.; Pearson, R. G. J. Am. Chem. Soc. 1962, 84, 16. https://doi.org/10.1021/ja00860a005
  2. Buncel, E.; Um, I. H.; Terrier, F. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; Wiley Press: West Sussex, 2009; Chapter 17.
  3. Buncel, E.; Um, I. H. Tetrahedron Lett. 2004, 60, 7801. https://doi.org/10.1016/j.tet.2004.05.006
  4. Hoz, S.; Buncel, E. Isr. J. Chem. 1985, 26, 313.
  5. Grekov, A. P.; Beselov, V. Ya. Russ. Chem. Rev. 1978, 47, 631 https://doi.org/10.1070/RC1978v047n07ABEH002243
  6. Fina, N. J.; Edwards, J. O. Int. J. Chem. Kinet. 1973, 5, 1. https://doi.org/10.1002/kin.550050102
  7. Um, I. H.; Han, J. Y.; Buncel, E. Chem. Eur. J. 2009, 15, 1011. https://doi.org/10.1002/chem.200801534
  8. Um, I. H.; Hwang, S. J.; Buncel, E. J. Org. Chem. 2006, 71, 915. https://doi.org/10.1021/jo051823f
  9. Um, I. H.; Lee, J. Y.; Bae, S. Y.; Buncel, E. Can. J. Chem. 2005, 83, 1365. https://doi.org/10.1139/v05-157
  10. Buncel, E.; Um, I. H. Chem. Commun. 1986, 595.
  11. Um, I. H.; Buncel, E. J. Org. Chem. 2000, 65, 577. https://doi.org/10.1021/jo9915776
  12. Um, I. H.; Shin, Y. H.; Han, J. Y.; Buncel, E. Can. J. Chem. 2006, 84, 1550. https://doi.org/10.1139/v06-156
  13. Um, I. H.; Hong, J. Y.; Buncel, E. Chem. Commun. 2001, 27.
  14. Um, I. H.; Buncel, E. J. Am. Chem. Soc. 2001, 123, 11111. https://doi.org/10.1021/ja016917v
  15. Tarkka, R. M.; Buncel, E. J. Am. Chem. Soc. 1995, 117, 1503. https://doi.org/10.1021/ja00110a006
  16. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475.
  17. Um, I. H.; Lee, E. J.; Buncel, E. J. Org. Chem. 2001, 66, 4859. https://doi.org/10.1021/jo0156114
  18. Um, I. H.; Park, Y. M.; Buncel, E. Chem. Commun. 2000, 1917.
  19. Fountain, K. R. J. Phys. Org. Chem. 2005, 18, 481. https://doi.org/10.1002/poc.897
  20. Fountain, K. R.; Felkerson, C. J.; Driskell, J. D.; Lamp, B. D. J. Org. Chem. 2003, 68, 1810. https://doi.org/10.1021/jo0206263
  21. Fountain, K. R.; Tad-y, D. B.; Paul, T. W.; Golynskiy, M. V. J. Org. Chem. 1999, 64, 6547. https://doi.org/10.1021/jo981902+
  22. Fountain, K. R.; Patel, K. D. J. Org. Chem. 1997, 62, 4795. https://doi.org/10.1021/jo9606012
  23. Fountain, K. R.; Dunkin, T. W.; Patel, K. D. J. Org. Chem. 1997, 62, 2738. https://doi.org/10.1021/jo9620021
  24. Fountain, K. R.; White, R. D.; Patel, K. D.; New, D. G.; Xu, Y. B.; Cassely, A. J. J. Org. Chem. 1996, 61, 9434. https://doi.org/10.1021/jo951448z
  25. Gregory, M. J.; Bruice, T. C. J. Am. Chem. Soc. 1967, 89, 4400. https://doi.org/10.1021/ja00993a026
  26. Dixon, J. E.; Bruice, T. C. J. Am. Chem. Soc. 1972, 94, 2052. https://doi.org/10.1021/ja00761a043
  27. Dixon, J. E.; Bruice, T. C. J. Am. Chem. Soc. 1971, 93, 6592. https://doi.org/10.1021/ja00753a044
  28. Bernasconi, C. F.; Leyes, A. E.; Eventova, I.; Rappoport, Z. J. Am. Chem. Soc. 1995, 117, 1703. https://doi.org/10.1021/ja00111a006
  29. Bernasconi, C. F. Adv. Phys. Org. Chem. 1992, 27, 119.
  30. Bernasconi, C. F.; Stronach, M. W. J. Org. Chem. 1991, 56, 1993. https://doi.org/10.1021/jo00006a008
  31. Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301. https://doi.org/10.1021/ar00140a006
  32. Bernasconi, C. F.; Murray, C. J. J. Am. Chem. Soc. 1986, 108, 5251. https://doi.org/10.1021/ja00277a032
  33. Hoz, S.; Buncel, E. Tetrahedron Lett. 1984, 25, 3411. https://doi.org/10.1016/S0040-4039(01)91033-0
  34. Buncel, E.; Hoz, S. Tetrahedron Lett. 1983, 24, 4777. https://doi.org/10.1016/S0040-4039(00)94005-X
  35. Hoz, S. J. Org. Chem. 1982, 47, 3545. https://doi.org/10.1021/jo00139a033
  36. Ghosh, K. K.; Tiwari, S.; Marek, J.; Kuca, K. Lett. Drug Des. Discovery 2010, 7, 194. https://doi.org/10.2174/157018010790596650
  37. Ghosh, K. K.; Tiwari, S.; Marek, J.; Kuca, K. J. Chem. Eng. Data 2010, 55, 1153. https://doi.org/10.1021/je9005773
  38. Ghosh, K. K.; Sinha, D.; Satnami, M. L.; Dubey, D. K.; Rodriguez-Dafonte, P.; Mundhara, G. L. Langmuir. 2005, 21, 8664. https://doi.org/10.1021/la051223b
  39. Shrivastava, A.; Ghosh, K. K. J. Mol. Liq. 2008, 141, 99. https://doi.org/10.1016/j.molliq.2008.03.008
  40. Villano, S. M.; Eyet, N.; Lineberger, W. C.; Bierbaum, V. M. J. Am. Chem. Soc. 2009, 131, 8227. https://doi.org/10.1021/ja9012084
  41. Depuy, C. H.; Della, E. W.; Filley, J.; Grabowski, J. J.; Bierbaum, V. M. J. Am. Chem. Soc. 1983, 105, 2481. https://doi.org/10.1021/ja00346a066
  42. Wolfe, S.; Mitchell, D. J.; Schlegel, H. B.; Minot, C.; Eisenstein, O. Tetrahedron Lett. 1982, 23, 615. https://doi.org/10.1016/S0040-4039(00)86904-X
  43. McAnoy, A. M.; Paine, M. R.; Blanksby, S. J. Org. Biomol. Chem. 2008, 6, 2316. https://doi.org/10.1039/b803734e
  44. Patterson, E. V.; Fountain, K. R. J. Org. Chem. 2006, 71, 8121. https://doi.org/10.1021/jo061275l
  45. Wei, X. G.; Sun, X. M.; Wu, W. P.; Ren, Y.; Wong, N. B.; Li, W. K. J. Org. Chem. 2010, 75, 4212. https://doi.org/10.1021/jo1006575
  46. Ren, Y.; Yamataka, H. J. Comb. Chem. 2009, 30, 358. https://doi.org/10.1002/jcc.21061
  47. Ren, Y.; Yamataka, H. J. Org. Chem. 2007, 72, 5660. https://doi.org/10.1021/jo070650m
  48. Ren, Y.; Yamataka, H. Chem. Eur. J. 2007, 13, 677. https://doi.org/10.1002/chem.200600203
  49. Ren, Y.; Yamataka, H. Org. Lett. 2006, 8, 119. https://doi.org/10.1021/ol0526930
  50. Ritchie, J. F. J. Am. Chem. Soc. 1983, 105, 7313. https://doi.org/10.1021/ja00363a018
  51. Min, S. W.; Kim, M. Y.; Um, I. H. Bull. Korean Chem. Soc. 2012, 33, in press
  52. Seo, J. A.; Lee, H. M.; Um, I. H. Bull. Korean Chem. Soc. 2008, 29, 1915. https://doi.org/10.5012/bkcs.2008.29.10.1915
  53. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963. https://doi.org/10.1021/ja00463a032
  54. Um, I. H.; Shin, Y. H.; Park, J. E.; Kang, J. S.; Buncel, E. Chem. Eur. J. 2012, 18, 961. https://doi.org/10.1002/chem.201102404
  55. Um, I. H.; Bae, A R. J. Org. Chem. 2011, 76, 7510. https://doi.org/10.1021/jo201387h
  56. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267. https://doi.org/10.1016/S0065-3160(08)60009-X
  57. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129. https://doi.org/10.1039/cs9962500129
  58. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965. https://doi.org/10.1246/bcsj.32.965
  59. Than, S.; Badal, M.; Itoh, S.; Mishima, M. J. Phys. Org. Chem. 2010, 23, 411.
  60. Itoh, S.; Badal, M.; Mishima, M J. Phys. Org. Chem. 2009, 113, 10075. https://doi.org/10.1021/jp904159u
  61. Than, S.; Maeda, H.; Irie, M.; Kikukawa, K.; Mishima, M. Int. J. Mass. Spect. 2007, 263, 205.
  62. Maeda, H.; Irie, M.; Than, S.; Kikukawa, K.; Mishima, M. Bull. Chem. Soc. Jpn. 2007, 80, 195. https://doi.org/10.1246/bcsj.80.195
  63. Fujio, M.; Alam, M. A.; Umezaki, Y.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2007, 80, 2378. https://doi.org/10.1246/bcsj.80.2378
  64. Mishima, M.; Maeda, H.; Than, S.; Irie, M.; Kikukawa, K. J. Phys. Org. Chem. 2006, 19, 616. https://doi.org/10.1002/poc.1104
  65. Um, I. H.; Chung, E. K.; Lee, S. M. Can. J. Chem. 1998, 76, 729.
  66. Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971. https://doi.org/10.1021/ja00185a029
  67. Um, I. H.; Kim, E. Y.; Park, H. R. J. Org. Chem. 2006, 71, 2302. https://doi.org/10.1021/jo052417z
  68. Kim, S. I.; Hwang, S. J.; Jung, E. M.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 2015. https://doi.org/10.5012/bkcs.2010.31.7.2015
  69. Castro, E. A.; Angel, M.; Arellano, D.; Santos, J. G. J. Org. Chem. 2001, 66, 6571. https://doi.org/10.1021/jo0101252

Cited by

  1. Unprecedented Synthesis of 3-Alkenyl-3-ethoxy-2-iminoketones via 1,3-Dipolar Cycloadditions of Nitrones with Alkynyl Fischer Carbene Complexes vol.32, pp.15, 2013, https://doi.org/10.1021/om400420c
  2. 2 reaction vol.36, pp.11, 2015, https://doi.org/10.1002/jcc.23862
  3. Theoretical estimation of kinetic parameters for nucleophilic substitution reactions in solution: an application of a solution translational entropy model vol.18, pp.8, 2016, https://doi.org/10.1039/C5CP07803B
  4. Mechanistic study of carboxylic acid and phosphate ester cleavage by oximate metal complexes surpassing the limiting reactivity of highly basic free oximate anions vol.49, pp.8, 2013, https://doi.org/10.1039/c9dt04733f