DOI QR코드

DOI QR Code

Nylon 66 Viscosity Effect on Mechanical Properties of Nylon 66/Cloisite 93A Nanocomposite

Nylon 66/Cloisite 93A 나노복합체의 기계적 성질에 대한 Nylon 66 점도 효과

  • Park, Sang-Cheol (Department of Polymer Science, Kyungpook National University) ;
  • Kim, Ho-Gyum (Department of Polymer Science, Kyungpook National University) ;
  • Min, Kyung-Eun (Department of Polymer Science, Kyungpook National University)
  • 박상철 (경북대학교 고분자공학과) ;
  • 김호겸 (경북대학교 고분자공학과) ;
  • 민경은 (경북대학교 고분자공학과)
  • Received : 2012.09.12
  • Accepted : 2012.11.05
  • Published : 2013.01.25

Abstract

It is found that the commercialization of nylon 66/Cloisite 93A nanocomposite by applying melt intercalation is possible in the composite production facilities of the pilot scale which has been generalized today. The strength and modulus under tensile and flexural stress have been improved with the introduction of Cloisite 93A in nylon 66. Furthermore, it is found through the analysis of morphologic and crystallization behavior that the elements such as content of Cloisite 93A, viscosity of nylon 66 and the crystallization behavior have significantly influences on the characteristics of nanocomposite.

현재 일반화되어 있는 pilot scale의 복합체 생산설비에서 용융 삽입법으로 nylon 66/Cloisite 93A 나노복합체의 상용화 가능성을 확인하였으며, nylon 66에 Cloisite 93A 도입으로 인장 및 굴곡응력에 대한 강도와 탄성률이 향상되었고, 형태학적 및 결정화 거동의 분석을 통해 Cloisite 93A 함량, nylon 66 점도 및 그에 따른 결정화 거동이 주요 영향요소임을 확인하였다.

Keywords

References

  1. B. Lin, A. Thumen, H.-P. Heim, G. Scheel, and U. Sundararaj, Polym. Eng. Sci., 49, 824 (2009). https://doi.org/10.1002/pen.21327
  2. P. M. Ajayan, L. S. Schadler, C. Giannaris, and A. Rubio, Adv. Mater., 12, 750 (2000). https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
  3. J.-M. Benoit, B. Corraze, S. Lefrant, W. J. Blau, P. Bernier, and O. Chauvet, Synth. Met., 121, 1215 (2001). https://doi.org/10.1016/S0379-6779(00)00838-9
  4. K. Lozano and E. V. Barrera, J. Appl. Polym. Sci., 79, 125 (2001). https://doi.org/10.1002/1097-4628(20010103)79:1<125::AID-APP150>3.0.CO;2-D
  5. S. S. Ray and M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  6. F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, J. Comput. Mater., 40, 1511 (2006). https://doi.org/10.1177/0021998306067321
  7. A. Usuki, N. Hasegawa, and M. Kato, Adv. Polym. Sci., 179, 135 (2005). https://doi.org/10.1007/b104481
  8. C. E. Powell and G. W. Beall, Curr. Opin. Solid State Mater. Sci., 10, 73 (2006). https://doi.org/10.1016/j.cossms.2006.09.001
  9. Z. Z. Yu, C. Yan, M. Yang, and Y. W. Mai, Polym. Int., 53, 1093 (2004). https://doi.org/10.1002/pi.1498
  10. T. Lan and T. J. Pinnavaia, Chem. Mater., 6, 2216 (1994). https://doi.org/10.1021/cm00048a006
  11. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 6, 1719 (1994). https://doi.org/10.1021/cm00046a026
  12. X. Kornmann, H. Lindberg, and L. A. Berglund, Polymer, 42, 4493 (2001). https://doi.org/10.1016/S0032-3861(00)00801-6
  13. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, Macromolecules, 30, 6333 (1997). https://doi.org/10.1021/ma961786h
  14. M. Kato, A. Usuki, and A. Okada, J. Appl. Polym. Sci., 63, 1781 (1997).
  15. P. Maiti, P. H. Nam, M. Okamoto, N. Hasegawa, and A. Usuki, Macromolecules, 35, 2042 (2002). https://doi.org/10.1021/ma010852z
  16. M. Alexandre, P. Dubois, T. Sun, J. M. Garces, and R. J'erome, Polymer, 43, 2123 (2002). https://doi.org/10.1016/S0032-3861(02)00036-8
  17. R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 8000 (1997). https://doi.org/10.1021/ma9603488
  18. R. A. Vaia, K. D. Jandt, E. J. Kramer, and E. P. Giannelis, Macromolecules, 28, 8080 (1995). https://doi.org/10.1021/ma00128a016
  19. M. W. Weimer, H. Chen, E. P. Giannelis, and D. Y. Sogah, J. Am. Chem. Soc., 121, 1615 (1999). https://doi.org/10.1021/ja983751y
  20. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, J. Polym. Sci. Part A: Polym. Chem., 31, 2493 (1993). https://doi.org/10.1002/pola.1993.080311009
  21. K. Yano, A. Usuki, and A. Okada, J. Polym. Sci. Part A: Polym. Chem., 35, 2289 (1997). https://doi.org/10.1002/(SICI)1099-0518(199708)35:11<2289::AID-POLA20>3.0.CO;2-9
  22. D. M. Delozier, R. A. Orwoll, J. F. Cahoon, N. J. Johnston, J. G. Smith, and J. W. Connell, Polymer, 43, 813 (2001).
  23. Y. C. Ke, C. F. Long, and Z. N. Qi, J. Appl. Polym. Sci., 71, 1139 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1139::AID-APP12>3.0.CO;2-E
  24. Z. Wang and T. J. Pinnavaia, Chem. Mater., 10, 3769 (1998). https://doi.org/10.1021/cm980448n
  25. X. Huang, S. Lewis, W. J. Brittain, and R. A. Vaia, Macromolecules, 33, 2000 (2000). https://doi.org/10.1021/ma991709x
  26. M. Lee, J. Ku, B. H. Min, and J. H. Kim, Appl. Chem. Eng., 22, 490 (2011).
  27. T. D. Fornes, P. J. Yoon, H. Keskkula, and D. R. Paul, Polymer, 42, 9929 (2001). https://doi.org/10.1016/S0032-3861(01)00552-3
  28. J. W. Gilman, A. B. Morgan, R. H. Harris, Jr., E. Manias, E. P. Giannelis, and M. Wuthenow, New Advances in Flame Retardant Technology, CRC Press, Lancaster, Pennsylvania, p 9 (1999).
  29. O. Monticelli, Z. Musina, F. Ghigliotti, S. Russo, and V. Causin, e-Polymers, No.124 (2007).
  30. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 179 (1993).
  31. S. H. Wu, F. Y. Wang, C.-C. M. Ma, W. C. Chang, C.-T. Kuo, H.- C. Kuan, and W.-J. Chen, Mater. Lett., 49, 327 (2001). https://doi.org/10.1016/S0167-577X(00)00394-3
  32. P. Uribe-Arocha, C. Mehler, J. E. Puskas, and V. Altstadt, Polymer, 44, 2441 (2003). https://doi.org/10.1016/S0032-3861(03)00115-0
  33. T. Kashiwagi, R. H. Harris, Jr., X. Zhang, R. M. Briber, B. H. Cipriano, S. R. Raghavan, W. H. Awad, and J. R. Shields, Polymer, 45, 881 (2004). https://doi.org/10.1016/j.polymer.2003.11.036
  34. B. Mu, Q. Wang, T. Wang, H. Wang, and L. Jian, Polym. Eng. Sci., 48, 203 (2008). https://doi.org/10.1002/pen.20956
  35. X. Liu and Q. Wu, Macromol. Mater. Eng., 287, 180 (2002). https://doi.org/10.1002/1439-2054(20020301)287:3<180::AID-MAME180>3.0.CO;2-T
  36. F. Chavarria and D. R. Paul, Polymer, 45, 8501 (2004). https://doi.org/10.1016/j.polymer.2004.09.074
  37. X. H. Liu and Q. J. Wu, Macromol. Mater. Eng., 287, 180 (2002). https://doi.org/10.1002/1439-2054(20020301)287:3<180::AID-MAME180>3.0.CO;2-T
  38. M. Mehrabzadeh and M. R. Kamal, Polym. Eng. Sci., 44, 1152 (2004). https://doi.org/10.1002/pen.20108
  39. B. Han, G. D. Ji, S. S. Wu, and J. Shen, Eur. Polym. J., 39, 1641 (2003). https://doi.org/10.1016/S0014-3057(03)00075-2
  40. L. Shen, I. Y. Phang, L. Chen, T. X. Liu, and K. Y. Zeng, Polymer, 45, 3341 (2004). https://doi.org/10.1016/j.polymer.2004.03.036
  41. D. P. N. Vlasveld, S. G. Vaidya, H. E. N. Bersee, and S. J. Picken, Polymer, 46, 3452 (2005). https://doi.org/10.1016/j.polymer.2005.02.094
  42. P. M. Gyoo, S. Venkataramani, and S. C. Kim, J. Appl. Polym. Sci., 101, 1711 (2006). https://doi.org/10.1002/app.23339
  43. Y. L. Lu, Y. Zhang, G. B. Zhang, M. S. Yang, S. K. Yan, and D. Y. Shen, Polymer, 45, 8999 (2004). https://doi.org/10.1016/j.polymer.2004.10.025
  44. Z.-Z. Yu, M. S. Yang, Q. X. Zhang, C. G. Zhao, and Y.-W. Mai, J. Polym. Sci. Part B: Polym. Phys., 41, 1234 (2003). https://doi.org/10.1002/polb.10480
  45. X. H. Liu, Q. J. Wu, and L. A. Berglund, Polymer, 43, 4967 (2002). https://doi.org/10.1016/S0032-3861(02)00331-2
  46. Y. L. Lu, G. B. Zhang, M. Feng, Y. Zhang, M. S. Yang, and D. Y. Shen, J. Polym. Sci. Part B: Polym. Phys., 41, 2313 (2003). https://doi.org/10.1002/polb.10529
  47. L. Shen, I. Y. Phang, L. Chen, T. Liu, and K. Zeng, Polymer, 45, 3341 (2004). https://doi.org/10.1016/j.polymer.2004.03.036
  48. W. J. Noh, J. G. Noh, D. S. Kim, and S. H. Kim, KSAE, 10, 2639 (2010).
  49. A. Dasari, J. Rohrmann, and R. D. K. Misra, Mater. Sci. Eng., A 354, 67 (2003). https://doi.org/10.1016/S0921-5093(02)00873-0
  50. S. S. Lee, M. Park, S. H. Lim, J. K. Kim, and J. T. Hwang, Polym. Sci. Technol., 18, 8 (2007).
  51. I. Y. Phang, L. Chen, W. C. Tjiu, S. Pisharath, and T. X. Liu, Mater. Res. Innov., 8, 159 (2004).
  52. Y. Dong and D. Bhattacharyya, Composites : Part A, 39, 1177 (2008). https://doi.org/10.1016/j.compositesa.2008.03.006
  53. I. Y. Phang, T. Liu, A. Mohamed, K. P. Pramoda, L. Chen, L. Shen, S. Y. Chow, C. He, X. Lu, and X. Hu, Polym. Int., 54, 456 (2005). https://doi.org/10.1002/pi.1721
  54. H. B. Lee, H. G. Kim, K. B. Yoon, D. H. Lee, and K E. Min, Polymer(Korea), 32, 31 (2008).
  55. H. Wang, C. Zeng, M. Elkovitch, L. J. Lee, and K. W. Koelling, Polym. Eng. Sci., 41, 2036 (2001). https://doi.org/10.1002/pen.10899
  56. H. Lu, X. Xu, X. Li, and Z. Zhang, Bull. Mater. Sci., 29, 485 (2006). https://doi.org/10.1007/BF02914079
  57. Q. X. Zhang, Z. Z. Yu, M. Yang, J. Ma, and Y. W. Mai, J. Polym. Sci. Part B: Polym. Phys., 41, 2861 (2003). https://doi.org/10.1002/polb.10608
  58. Y. Lu, G. Zhang, M. Feng, Y. Zhang, M. Yang, and D. Shen, J. Polym. Sci. Part B: Polym. Phys., 41, 2313 (2003). https://doi.org/10.1002/polb.10529
  59. S. Pavlidou and C. D. Papaspyrides, Prog. Polym. Sci., 33, 1119 (2008). https://doi.org/10.1016/j.progpolymsci.2008.07.008
  60. Y. S. Choi and I. J. Chung, Korean Chem. Eng. Res., 46, 23 (2008).
  61. X. Xu, B. Li, H. Lu, Z. Zhang, and H. Wang, J. Appl. Polym. Sci., 107, 2007 (2008). https://doi.org/10.1002/app.27325
  62. B. Han, G. Ji, S. Wu, and J. Shen, Eur. Polym. J., 39, 1641 (2003). https://doi.org/10.1016/S0014-3057(03)00075-2
  63. C. H. Chen, H. Y. Li, C. Y. Chien, F. S. Yen, H. Y. Chen, and J. M. Lin, J. Appl. Polym. Sci., 112, 1063 (2009). https://doi.org/10.1002/app.29494
  64. D. S. Homminga, B. Goderis, Vincent B. G. Mathot, and G. Groeninckx, Polymer, 47, 1630 (2006). https://doi.org/10.1016/j.polymer.2005.10.141

Cited by

  1. Effects of Test Temperature and Water Absorption on Elastic Modulus of Polyamide 6 vol.27, pp.4, 2013, https://doi.org/10.7467/ksae.2019.27.4.291