DOI QR코드

DOI QR Code

RBF-POD reduced-order modeling of DNA molecules under stretching and bending

  • Lee, Chung-Hao (Institute for Computational Engineering and Sciences (ICES),University of Texas at Austin) ;
  • Chen, Jiun-Shyan (Department of Structural Engineering, University of California, San Diego (UCSD))
  • Received : 2013.09.18
  • Accepted : 2013.11.12
  • Published : 2013.12.25

Abstract

Molecular dynamics (MD) systems are highly nonlinear and nonlocal, and the conventional model order reduction methods are ineffective for MD systems. The RBF-POD method (Lee and Chen, 2013) employed a radial basis function (RBF) approximated potential energies and inter-atomic forces of MD systems under the framework of the proper orthogonal decomposition (POD) method for the reduced-order modeling of MD systems. In this work, we focus on the numerical procedures of the RBF-POD method and demonstrate how to apply this approach to the modeling of ds-DNA molecules under stretching and bending conditions.

Keywords

References

  1. Allen, M.P. and Tildesley, D.J. (1989), Computer Simulation of Liquids, Oxford University Press, New York.
  2. Amsallem, D. and Farhat, C. (2008), "Interpolation method for adapting reduced-order models and application to aeroelasticity", AIAA J., 46(7), 1803-1813. https://doi.org/10.2514/1.35374
  3. An, S.S., Kim, T. and James, D.L. (2008), "Optimizing cubature for efficient integration of subspace deformations", ACM Trans. Graphics, 27(5), Article 165.
  4. Antoulas, A.C. (1996), Approximation of Large-Scale Dynamical Structures, Dynamical Systems and Symmetry, Cambridge University Press: Cambridge.
  5. Astrid, P., Weiland, S., Willcox, K. and Backx, T. (2008), "Missing point estimation in models described by proper orthogonal decomposition", IEEE Trans. Autom. Control, 53(10), 2237-2251. https://doi.org/10.1109/TAC.2008.2006102
  6. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.R. (1984), "Molecular dynamics with coupling to an external bath", J. Chem. Phys., 81, 3684-3690. https://doi.org/10.1063/1.448118
  7. Boley, D.L. (1994), "Krylov subspace methods on state-space control models", Circuit Syst. Signal Process., 13(6), 733-758. https://doi.org/10.1007/BF02523124
  8. Bui-Thanh, T., Damodaran, M. and Willcox, K. (2003), "Proper orthogonal decomposition extensions for parametric applications in transonic aerodynamics", Proceedings of the 21th Applied Aerodynamics Conference, Orlando, FL, USA.
  9. Carlberg, K., Farhat, C., Cortial, J. and Amsallem, D. (2013), "The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows", J. Comput. Phys., 242(1), 623-647. https://doi.org/10.1016/j.jcp.2013.02.028
  10. Chaturantabut, S. and Sorensen, D.C. (2010), "Nonlinear model reduction via discrete empirical interpolation", SIAM J. Sci. Comput., 32(5), 2737-2764. https://doi.org/10.1137/090766498
  11. Chen, J.S., Lee, C.H., Teng, H. and Wang, H. (2012), "Atomistic to continuum modeling of DNA molecules", in Advances in Soft Mateter Mechanics, 1-53, Springer Berlin Heidelberg.
  12. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell and J.M., Kollman, P.A. (1995), "A second generation force field for the simulation of proteins, nucleic acids, and organic molecules", J. Am. Chem. Soc., 117(19), 5179-5197. https://doi.org/10.1021/ja00124a002
  13. Das, P., Moll, M., Stamati, H., Kavraki, L.E. and Clementi, C. (2006), "Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction", Proc. Natl. Acad. Sci., 103(26), 9885-9890. https://doi.org/10.1073/pnas.0603553103
  14. Gallivan, K., Grimme, E. and Van Dooren, P. (1994), "Asymptotic waveform evaluation via a Lanczos method," Appl. Math. Lett., 7(5), 75-80.
  15. Gevorkian, S.G. and Khudaverdian, E.E. (1990), "Mechanical properties of DNA films", Biopolymers, 30, 279-285. https://doi.org/10.1002/bip.360300306
  16. Han, J.S., Rudnyi, E.B. and Korvink, J.G. (2005), "Efficient optimization of transient dynamic problems in MEMS devices using model order reduction", J Micromech. Microeng., 15(4), 822-832. https://doi.org/10.1088/0960-1317/15/4/021
  17. Harris, S.A., Sands, Z.A. and Laughton C.A. (2005), "Molecular dynamics simulations of duplex stretching reveal the importance of entropy in determining the biomechanical properties of DNA," Biophys. J., 88(3), 1684-1691. https://doi.org/10.1529/biophysj.104.046912
  18. Hayward, S., Kitao, A. and Go, N. (1994) "Harmonic and anharmonic aspects in the dynamics of BPTI: a normal mode analysisand principal component analysis", Protein Sci., 3(6), 936-943.
  19. Holmes, P., Lumley, J.L. and Berkooz, G. (1996), Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press: Cambridge, England.
  20. Izrailev, S., Stepaniants, S., Barry, I., Kosztin, D., Lu, H., Molnar, F., Wriggers, W. and Schulten, K. (1999), "Steered molecular dynamics," Computational Molecular Dynamics: Challenges, Methods, Ideas in Lecture Notes in Computational Science and Engineering, 4, 39-65.
  21. Kerschen, G., Golinval, J., Vakakis, A.F. and Bergman, L.A. (2005), "The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview", Nonlinear Dynam., 41(1-3), 147-169. https://doi.org/10.1007/s11071-005-2803-2
  22. Kunisch, K. and Volkwein, S. (2002), "Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics", SIAM J. Numer. Anal., 40(2), 492-515. https://doi.org/10.1137/S0036142900382612
  23. Lee, C.H. and Chen, J.S. (2013), "Proper orthogonal decomposition-based model order reduction via radial basis functions for molecular dynamics systems", Int. J. Numer. Meth. Eng., 96(10), 599-627. https://doi.org/10.1002/nme.4552
  24. Rathinam, M. and Petzold, L.R. (2003), "A new look at proper orthogonal decomposition", SIAM J. Numer. Anal., 41(5), 1893-1925. https://doi.org/10.1137/S0036142901389049
  25. Ren, P., Wu, C. and Ponder, J.W. (2011), "Polarizable atomic multipole-based molecular mechanics for organic molecules", J. Chem. Theory Comput., 7(10), 3143-3161. https://doi.org/10.1021/ct200304d
  26. Rewieński, M. and White, J. (2003), "A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices", IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 22, 155-170. https://doi.org/10.1109/TCAD.2002.806601
  27. Silveira, L.M., Kamon, M., White, J. and Elfadel, I. (1996), "A coordinate-transformed Arnoldi algorithm for generating guaranteed state reduced-order models of RCL circuits", Proceedings of the 1996 IEEE/ACM International Conference on Computer-Aided Design, 288-294.
  28. Sirovich, L. (1987), "Turbulence and the dynamics of coherent structures. Part I: coherent structures", Q. Appl. Math., 45, 561-571. https://doi.org/10.1090/qam/910462
  29. Skjaerven, L., Martinez, A. and Reuter, N. (2011),"Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit", Proteins: Struct., Funct., Bioinf., 79(1), 232-243. https://doi.org/10.1002/prot.22875
  30. Smolyak, S.A. (1963), "Quadrature and interpolation formulas for tensor products of certain classes of functions", Doklady Math., 4, 240-243.
  31. Tang, D., Li, A., Attar, P. and Dowell, E.H. (2004) "Reduced order dynamic model for polysaccharides molecule attached to an atomicforce microscope", J. Comput. Phys., 201(2), 723-752. https://doi.org/10.1016/j.jcp.2004.06.016
  32. Teng, H., Lee, C.H. and Chen, J.S. (2011), "On the continuum formulation for modeling DNA loop formation", Int. J. Interact. Multiscale Mech., 4, 219-239. https://doi.org/10.12989/imm.2011.4.3.219
  33. Verlet, L. (1967), "Computer experiments on classical fluids. I. Thermodynamical properties of Lennar-Jones molecules", Phys. Rev., 159, 98-103. https://doi.org/10.1103/PhysRev.159.98

Cited by

  1. Physics-constrained local convexity data-driven modeling of anisotropic nonlinear elastic solids vol.1, pp.None, 2013, https://doi.org/10.1017/dce.2020.20