References
- Allen, M.P. and Tildesley, D.J. (1989), Computer Simulation of Liquids, Oxford University Press, New York.
- Amsallem, D. and Farhat, C. (2008), "Interpolation method for adapting reduced-order models and application to aeroelasticity", AIAA J., 46(7), 1803-1813. https://doi.org/10.2514/1.35374
- An, S.S., Kim, T. and James, D.L. (2008), "Optimizing cubature for efficient integration of subspace deformations", ACM Trans. Graphics, 27(5), Article 165.
- Antoulas, A.C. (1996), Approximation of Large-Scale Dynamical Structures, Dynamical Systems and Symmetry, Cambridge University Press: Cambridge.
- Astrid, P., Weiland, S., Willcox, K. and Backx, T. (2008), "Missing point estimation in models described by proper orthogonal decomposition", IEEE Trans. Autom. Control, 53(10), 2237-2251. https://doi.org/10.1109/TAC.2008.2006102
- Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.R. (1984), "Molecular dynamics with coupling to an external bath", J. Chem. Phys., 81, 3684-3690. https://doi.org/10.1063/1.448118
- Boley, D.L. (1994), "Krylov subspace methods on state-space control models", Circuit Syst. Signal Process., 13(6), 733-758. https://doi.org/10.1007/BF02523124
- Bui-Thanh, T., Damodaran, M. and Willcox, K. (2003), "Proper orthogonal decomposition extensions for parametric applications in transonic aerodynamics", Proceedings of the 21th Applied Aerodynamics Conference, Orlando, FL, USA.
- Carlberg, K., Farhat, C., Cortial, J. and Amsallem, D. (2013), "The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows", J. Comput. Phys., 242(1), 623-647. https://doi.org/10.1016/j.jcp.2013.02.028
- Chaturantabut, S. and Sorensen, D.C. (2010), "Nonlinear model reduction via discrete empirical interpolation", SIAM J. Sci. Comput., 32(5), 2737-2764. https://doi.org/10.1137/090766498
- Chen, J.S., Lee, C.H., Teng, H. and Wang, H. (2012), "Atomistic to continuum modeling of DNA molecules", in Advances in Soft Mateter Mechanics, 1-53, Springer Berlin Heidelberg.
- Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell and J.M., Kollman, P.A. (1995), "A second generation force field for the simulation of proteins, nucleic acids, and organic molecules", J. Am. Chem. Soc., 117(19), 5179-5197. https://doi.org/10.1021/ja00124a002
- Das, P., Moll, M., Stamati, H., Kavraki, L.E. and Clementi, C. (2006), "Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction", Proc. Natl. Acad. Sci., 103(26), 9885-9890. https://doi.org/10.1073/pnas.0603553103
- Gallivan, K., Grimme, E. and Van Dooren, P. (1994), "Asymptotic waveform evaluation via a Lanczos method," Appl. Math. Lett., 7(5), 75-80.
- Gevorkian, S.G. and Khudaverdian, E.E. (1990), "Mechanical properties of DNA films", Biopolymers, 30, 279-285. https://doi.org/10.1002/bip.360300306
- Han, J.S., Rudnyi, E.B. and Korvink, J.G. (2005), "Efficient optimization of transient dynamic problems in MEMS devices using model order reduction", J Micromech. Microeng., 15(4), 822-832. https://doi.org/10.1088/0960-1317/15/4/021
- Harris, S.A., Sands, Z.A. and Laughton C.A. (2005), "Molecular dynamics simulations of duplex stretching reveal the importance of entropy in determining the biomechanical properties of DNA," Biophys. J., 88(3), 1684-1691. https://doi.org/10.1529/biophysj.104.046912
- Hayward, S., Kitao, A. and Go, N. (1994) "Harmonic and anharmonic aspects in the dynamics of BPTI: a normal mode analysisand principal component analysis", Protein Sci., 3(6), 936-943.
- Holmes, P., Lumley, J.L. and Berkooz, G. (1996), Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press: Cambridge, England.
- Izrailev, S., Stepaniants, S., Barry, I., Kosztin, D., Lu, H., Molnar, F., Wriggers, W. and Schulten, K. (1999), "Steered molecular dynamics," Computational Molecular Dynamics: Challenges, Methods, Ideas in Lecture Notes in Computational Science and Engineering, 4, 39-65.
- Kerschen, G., Golinval, J., Vakakis, A.F. and Bergman, L.A. (2005), "The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview", Nonlinear Dynam., 41(1-3), 147-169. https://doi.org/10.1007/s11071-005-2803-2
- Kunisch, K. and Volkwein, S. (2002), "Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics", SIAM J. Numer. Anal., 40(2), 492-515. https://doi.org/10.1137/S0036142900382612
- Lee, C.H. and Chen, J.S. (2013), "Proper orthogonal decomposition-based model order reduction via radial basis functions for molecular dynamics systems", Int. J. Numer. Meth. Eng., 96(10), 599-627. https://doi.org/10.1002/nme.4552
- Rathinam, M. and Petzold, L.R. (2003), "A new look at proper orthogonal decomposition", SIAM J. Numer. Anal., 41(5), 1893-1925. https://doi.org/10.1137/S0036142901389049
- Ren, P., Wu, C. and Ponder, J.W. (2011), "Polarizable atomic multipole-based molecular mechanics for organic molecules", J. Chem. Theory Comput., 7(10), 3143-3161. https://doi.org/10.1021/ct200304d
- Rewieński, M. and White, J. (2003), "A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices", IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 22, 155-170. https://doi.org/10.1109/TCAD.2002.806601
- Silveira, L.M., Kamon, M., White, J. and Elfadel, I. (1996), "A coordinate-transformed Arnoldi algorithm for generating guaranteed state reduced-order models of RCL circuits", Proceedings of the 1996 IEEE/ACM International Conference on Computer-Aided Design, 288-294.
- Sirovich, L. (1987), "Turbulence and the dynamics of coherent structures. Part I: coherent structures", Q. Appl. Math., 45, 561-571. https://doi.org/10.1090/qam/910462
- Skjaerven, L., Martinez, A. and Reuter, N. (2011),"Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit", Proteins: Struct., Funct., Bioinf., 79(1), 232-243. https://doi.org/10.1002/prot.22875
- Smolyak, S.A. (1963), "Quadrature and interpolation formulas for tensor products of certain classes of functions", Doklady Math., 4, 240-243.
- Tang, D., Li, A., Attar, P. and Dowell, E.H. (2004) "Reduced order dynamic model for polysaccharides molecule attached to an atomicforce microscope", J. Comput. Phys., 201(2), 723-752. https://doi.org/10.1016/j.jcp.2004.06.016
- Teng, H., Lee, C.H. and Chen, J.S. (2011), "On the continuum formulation for modeling DNA loop formation", Int. J. Interact. Multiscale Mech., 4, 219-239. https://doi.org/10.12989/imm.2011.4.3.219
- Verlet, L. (1967), "Computer experiments on classical fluids. I. Thermodynamical properties of Lennar-Jones molecules", Phys. Rev., 159, 98-103. https://doi.org/10.1103/PhysRev.159.98
Cited by
- Physics-constrained local convexity data-driven modeling of anisotropic nonlinear elastic solids vol.1, pp.None, 2013, https://doi.org/10.1017/dce.2020.20