DOI QR코드

DOI QR Code

ABC optimization of TMD parameters for tall buildings with soil structure interaction

  • Received : 2013.10.23
  • Accepted : 2013.11.11
  • Published : 2013.12.25

Abstract

This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for vibration control of high-rise structures including Soil Structure Interaction (SSI). The Artificial Bee Colony (ABC) method is employed for optimization. The TMD Mass, damping coefficient and spring stiffness are assumed as the design variables of the controller; and the objective is set as the reduction of both the maximum displacement and acceleration of the building. The time domain analysis based on Newmark method is employed to obtain the displacement, velocity and acceleration of different stories and TMD in response to 6 types of far field earthquakes. The optimized mass, frequency and damping ratio are then formulated for different soil types; and employed for the design of TMD for the 40 and 15 story buildings and 10 different earthquakes, and well results are achieved. This study leads the researchers to the better understanding and designing of TMDs as passive controllers for the mitigation of earthquake oscillations.

Keywords

References

  1. Averill, F.W., Morris, J.R. and Cooper, V.R. (2009), "Calculated properties of fully hydrogenated single layers of BN, BC2N, and graphene: graphene and its BN-containing analogues", Phys. Rev. B, 80, 195411. https://doi.org/10.1103/PhysRevB.80.195411
  2. Dodziuki, H. (2005), "Modeling complexes of H2 molecules in fullerenes", Chem. Phys. Lett., 410, 39-41. https://doi.org/10.1016/j.cplett.2005.05.038
  3. Ding, F., Lin, Y., Krasnov, P.O. and Yakobson, B.I. (2007), "Nanotube-derived carbon foam for hydrogen sorption", J. Chem. Phys., 127, 164703.
  4. Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C. (1996), Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA, USA.
  5. Drexler, K.E. (1992), Nanosystems - Molecular Machinery, Manufacturing and Computation, John Wiley & Sons, New York, USA.
  6. Er, S., Wijs de, G.A. and Brocks, G. (2009), "Hydrogen storage by polylithiated molecules and nanostructures", J. Phys. Chem. C, 113(20), 8997-9002. https://doi.org/10.1021/jp901305h
  7. Holbrook, K.A., Pilling, M.J. and Robertson, S.H. (1996), Unimolecular Reactions, John Wiley & Sons, New York, USA.
  8. Kim, B.R., Pyo, S.H., Lemaire, G. and Lee, H.K. (2011), "Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites", Interact. Multiscale Mech., 4, 173-185. https://doi.org/10.12989/imm.2011.4.3.173
  9. Kruse, H. and Grimme, S. (2009), "Accurate Quantum Chemical Description of Non-Covalent Interactions in Hydrogen Filled Endohedral Fullerene Complexes", J. Phys. Chem.C, 113, 17006-17010. https://doi.org/10.1021/jp904542k
  10. Labet, V., Gonzalez-Morelos, P., Hoffmann, R. and Ashcroft, N.W. (2012), "A fresh look at dense hydrogen under pressure. I. An introduction to the problem, and an index probing equalization of H-H distances", J. Chem. Phys., 136, 074501. https://doi.org/10.1063/1.3679662
  11. Lachawiec, A.J., Qi, G. and Yang, R.T. (2005), "Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement", Langmuir, 21, 11418-11424. https://doi.org/10.1021/la051659r
  12. Lee, T.B. and McKee, M.L. (2008), "Endohedral hydrogen exchange reactions in C60 (nH2@C60, n=1-5): comparison of recent methods in a high-pressure cooker", J. Am. Chem. Soc., 130, 17610-17619. https://doi.org/10.1021/ja8071868
  13. Li, R. and Sun, L.Z. (2011), "Dynamic mechanical analysis of silicone rubber reinforced with multi-walled carbon nanotubes", Interact. Multiscale Mech., 4, 239-245. https://doi.org/10.12989/imm.2011.4.3.239
  14. Li, Y. and Yang, R.T. (2006), "Significantly enhanced hydrogen storage in metal-organic frameworks via spillover", J. Am. Chem. Soc. JACS Commun., 128, 726-725. https://doi.org/10.1021/ja056831s
  15. Lin, Y., Ding, F. and Yakobson, B.I. (2008), "Hydrogen storage by spillover on graphene as a phase nucleation process", Phys. Rev. B, 78, 041402.
  16. Liu, W., Zhao, Y.H., Li, Y., Jiang, Q. and Lavernia, E.J. (2009), "Enhanced hydrogen storage on Li-dispersed carbon nanotubes", J. Phys. Chem. C, 113, 2028-2033. https://doi.org/10.1021/jp8091418
  17. Mattesini, M., Soler, J.M. and Yndurain, F. (2006), "Ab initio study of metal-organic framework-5 Zn4O(1,4-benzenedicarboxylate)3: an assessment of mechanical and spectroscopic properties", Phys. Rev. B, 73, 094111. https://doi.org/10.1103/PhysRevB.73.094111
  18. Bockman, T.M., Hubig, S.M. and Kochi, J.K. (1996), "Direct observation of carbon-carbon bond cleavage in ultrafast decarboxylations", J. Am. Chem. Soc., 119, 4502-4503.
  19. Miller, G.P., Kintigh, J., Kim, E., Weck, P.F., Berber, S. and Tomanek, D. (2008), "Hydrogenation of single-wall carbon nanotubes using polyamine reagents: combined experimental and theoretical study", J. Am. Chem. Soc., 130, 2296-2303. https://doi.org/10.1021/ja0775366
  20. Pupysheva, O.V., Farajian, A.A. and Yakobson, B.I. (2008), "Fullerene nanocage capacity for hydrogen storage", Nano Lett., 8, 767-774. https://doi.org/10.1021/nl071436g
  21. Salam, M.A., Sufian, S. and Lwin, Y. (2013), "Hydrogen adsorption study on mixed oxides using the density functional theory", J. Phys. Chem. Solids, 74, 558-564. https://doi.org/10.1016/j.jpcs.2012.12.004
  22. Shen, L. (2013), "Molecular dynamics study of Al solute-dislocation interactions in Mg alloys", Interact. Multiscale Mech., 6, 127-136. https://doi.org/10.12989/imm.2013.6.2.127
  23. Singh, A.K., Ribas, M.A. and Yakobson, B.I. (2009), "H-spillover through the catalyst saturation: an ab initio thermodynamics study", ACS Nano, 3, 1657-1662. https://doi.org/10.1021/nn9004044
  24. Sofo, J.O., Chaudhari, A.S. and Barber, G.D. (2007), "Graphane: a two-dimensional hydrocarbon", Phys. Rev. B, 75, 153401. https://doi.org/10.1103/PhysRevB.75.153401
  25. Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P. and Sanchez-Portal, D. (2002), "The SIESTA method for ab initio order-N materials simulation", J. Phys. Cond. Mat., 14, 2745-2779. https://doi.org/10.1088/0953-8984/14/11/302
  26. Stadie, N.P., Purewal, J.J., Ahn, C.C. and Fultz, B. (2010), "Measurements of hydrogen spillover in platinum doped superactived carbon", Langmuir, 26, 15481-15485. https://doi.org/10.1021/la9046758
  27. Strobel, R., Garche, J., Moseley, P.T., Jorissen, L. and Wolf, G. (2006), "Hydrogen storage by carbon materials", J. Power Sources, 159(2), 781-801. https://doi.org/10.1016/j.jpowsour.2006.03.047
  28. Tsetseris, L. and Pantelides, S.T. (2012), "Hydrogen uptake by graphene and nucleation of graphane", J. Mater. Sci., 47(21), 7571-7579. https://doi.org/10.1007/s10853-012-6447-6
  29. Tukerman, M.E. (2010), Statistical Mechanics: Theory and Molecular Simulation, Oxford University Press, Oxford, UK.
  30. Wang, Q., Sun, Q., Jena, P. and Kawazoe, Y. (2009), "Theoretical study of hydrogen storage in Ca-coated fullerenes", J. Chem. Theory Comput., 5, 374-379. https://doi.org/10.1021/ct800373g
  31. Wang, X. and Lee, J.D. (2011), "Heat resistance of carbon nanoonions by molecular dynamics simulation", Interact. Multiscale Mech., 4, 247-255. https://doi.org/10.12989/imm.2011.4.4.247
  32. Wen, X.D., Yang, T. and Hoffmann, R., Ashcroft, N.W., Martin, R.L., Rudin, S.P. and Zhu, J.X. (2012), "Graphane nanotubes", ACS Nanos, 6, 7142-7150. https://doi.org/10.1021/nn302204b
  33. Wu, G., Wang, J., Zeng, X.C., Hu, H. and Ding, F. (2010), "Controlling cross section of carbon nanotubes via selective hydrogenation", J. Phys. Chem. C., 114, 11753-11757.

Cited by

  1. Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method vol.51, pp.4, 2014, https://doi.org/10.12989/sem.2014.51.4.547
  2. Seismic control of buildings with active tuned mass damper through interval type-2 fuzzy logic controller including soil–structure interaction 2018, https://doi.org/10.1007/s42107-018-0016-5
  3. Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction vol.92, 2017, https://doi.org/10.1016/j.soildyn.2016.10.019
  4. Optimum tuned mass damper design in frequency domain for structures vol.21, pp.3, 2017, https://doi.org/10.1007/s12205-016-0829-2
  5. Optimum design of multiple positioned tuned mass dampers for structures constrained with axial force capacity pp.15417794, 2019, https://doi.org/10.1002/tal.1593
  6. Parametric study of pendulum type dynamic vibration absorber for controlling vibration of a two DOF structure vol.13, pp.1, 2013, https://doi.org/10.12989/eas.2017.13.1.051
  7. Self-control of high rise building L-shape in plan considering soil structure interaction vol.6, pp.3, 2013, https://doi.org/10.12989/csm.2017.6.3.229
  8. Active Tuned Mass Dampers for Control of Seismic Structures vol.19, pp.None, 2013, https://doi.org/10.37394/23205.2020.19.17
  9. Active structural control via metaheuristic algorithms considering soil-structure interaction vol.75, pp.2, 2020, https://doi.org/10.12989/sem.2020.75.2.175
  10. Optimum Design of Tuned Mass Dampers Using Colliding Bodies Optimization in Frequency Domain vol.44, pp.3, 2020, https://doi.org/10.1007/s40996-019-00296-6