References
- Averill, F.W., Morris, J.R. and Cooper, V.R. (2009), "Calculated properties of fully hydrogenated single layers of BN, BC2N, and graphene: graphene and its BN-containing analogues", Phys. Rev. B, 80, 195411. https://doi.org/10.1103/PhysRevB.80.195411
- Dodziuki, H. (2005), "Modeling complexes of H2 molecules in fullerenes", Chem. Phys. Lett., 410, 39-41. https://doi.org/10.1016/j.cplett.2005.05.038
- Ding, F., Lin, Y., Krasnov, P.O. and Yakobson, B.I. (2007), "Nanotube-derived carbon foam for hydrogen sorption", J. Chem. Phys., 127, 164703.
- Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C. (1996), Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA, USA.
- Drexler, K.E. (1992), Nanosystems - Molecular Machinery, Manufacturing and Computation, John Wiley & Sons, New York, USA.
- Er, S., Wijs de, G.A. and Brocks, G. (2009), "Hydrogen storage by polylithiated molecules and nanostructures", J. Phys. Chem. C, 113(20), 8997-9002. https://doi.org/10.1021/jp901305h
- Holbrook, K.A., Pilling, M.J. and Robertson, S.H. (1996), Unimolecular Reactions, John Wiley & Sons, New York, USA.
- Kim, B.R., Pyo, S.H., Lemaire, G. and Lee, H.K. (2011), "Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites", Interact. Multiscale Mech., 4, 173-185. https://doi.org/10.12989/imm.2011.4.3.173
- Kruse, H. and Grimme, S. (2009), "Accurate Quantum Chemical Description of Non-Covalent Interactions in Hydrogen Filled Endohedral Fullerene Complexes", J. Phys. Chem.C, 113, 17006-17010. https://doi.org/10.1021/jp904542k
- Labet, V., Gonzalez-Morelos, P., Hoffmann, R. and Ashcroft, N.W. (2012), "A fresh look at dense hydrogen under pressure. I. An introduction to the problem, and an index probing equalization of H-H distances", J. Chem. Phys., 136, 074501. https://doi.org/10.1063/1.3679662
- Lachawiec, A.J., Qi, G. and Yang, R.T. (2005), "Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement", Langmuir, 21, 11418-11424. https://doi.org/10.1021/la051659r
- Lee, T.B. and McKee, M.L. (2008), "Endohedral hydrogen exchange reactions in C60 (nH2@C60, n=1-5): comparison of recent methods in a high-pressure cooker", J. Am. Chem. Soc., 130, 17610-17619. https://doi.org/10.1021/ja8071868
- Li, R. and Sun, L.Z. (2011), "Dynamic mechanical analysis of silicone rubber reinforced with multi-walled carbon nanotubes", Interact. Multiscale Mech., 4, 239-245. https://doi.org/10.12989/imm.2011.4.3.239
- Li, Y. and Yang, R.T. (2006), "Significantly enhanced hydrogen storage in metal-organic frameworks via spillover", J. Am. Chem. Soc. JACS Commun., 128, 726-725. https://doi.org/10.1021/ja056831s
- Lin, Y., Ding, F. and Yakobson, B.I. (2008), "Hydrogen storage by spillover on graphene as a phase nucleation process", Phys. Rev. B, 78, 041402.
- Liu, W., Zhao, Y.H., Li, Y., Jiang, Q. and Lavernia, E.J. (2009), "Enhanced hydrogen storage on Li-dispersed carbon nanotubes", J. Phys. Chem. C, 113, 2028-2033. https://doi.org/10.1021/jp8091418
- Mattesini, M., Soler, J.M. and Yndurain, F. (2006), "Ab initio study of metal-organic framework-5 Zn4O(1,4-benzenedicarboxylate)3: an assessment of mechanical and spectroscopic properties", Phys. Rev. B, 73, 094111. https://doi.org/10.1103/PhysRevB.73.094111
- Bockman, T.M., Hubig, S.M. and Kochi, J.K. (1996), "Direct observation of carbon-carbon bond cleavage in ultrafast decarboxylations", J. Am. Chem. Soc., 119, 4502-4503.
- Miller, G.P., Kintigh, J., Kim, E., Weck, P.F., Berber, S. and Tomanek, D. (2008), "Hydrogenation of single-wall carbon nanotubes using polyamine reagents: combined experimental and theoretical study", J. Am. Chem. Soc., 130, 2296-2303. https://doi.org/10.1021/ja0775366
- Pupysheva, O.V., Farajian, A.A. and Yakobson, B.I. (2008), "Fullerene nanocage capacity for hydrogen storage", Nano Lett., 8, 767-774. https://doi.org/10.1021/nl071436g
- Salam, M.A., Sufian, S. and Lwin, Y. (2013), "Hydrogen adsorption study on mixed oxides using the density functional theory", J. Phys. Chem. Solids, 74, 558-564. https://doi.org/10.1016/j.jpcs.2012.12.004
- Shen, L. (2013), "Molecular dynamics study of Al solute-dislocation interactions in Mg alloys", Interact. Multiscale Mech., 6, 127-136. https://doi.org/10.12989/imm.2013.6.2.127
- Singh, A.K., Ribas, M.A. and Yakobson, B.I. (2009), "H-spillover through the catalyst saturation: an ab initio thermodynamics study", ACS Nano, 3, 1657-1662. https://doi.org/10.1021/nn9004044
- Sofo, J.O., Chaudhari, A.S. and Barber, G.D. (2007), "Graphane: a two-dimensional hydrocarbon", Phys. Rev. B, 75, 153401. https://doi.org/10.1103/PhysRevB.75.153401
- Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P. and Sanchez-Portal, D. (2002), "The SIESTA method for ab initio order-N materials simulation", J. Phys. Cond. Mat., 14, 2745-2779. https://doi.org/10.1088/0953-8984/14/11/302
- Stadie, N.P., Purewal, J.J., Ahn, C.C. and Fultz, B. (2010), "Measurements of hydrogen spillover in platinum doped superactived carbon", Langmuir, 26, 15481-15485. https://doi.org/10.1021/la9046758
- Strobel, R., Garche, J., Moseley, P.T., Jorissen, L. and Wolf, G. (2006), "Hydrogen storage by carbon materials", J. Power Sources, 159(2), 781-801. https://doi.org/10.1016/j.jpowsour.2006.03.047
- Tsetseris, L. and Pantelides, S.T. (2012), "Hydrogen uptake by graphene and nucleation of graphane", J. Mater. Sci., 47(21), 7571-7579. https://doi.org/10.1007/s10853-012-6447-6
- Tukerman, M.E. (2010), Statistical Mechanics: Theory and Molecular Simulation, Oxford University Press, Oxford, UK.
- Wang, Q., Sun, Q., Jena, P. and Kawazoe, Y. (2009), "Theoretical study of hydrogen storage in Ca-coated fullerenes", J. Chem. Theory Comput., 5, 374-379. https://doi.org/10.1021/ct800373g
- Wang, X. and Lee, J.D. (2011), "Heat resistance of carbon nanoonions by molecular dynamics simulation", Interact. Multiscale Mech., 4, 247-255. https://doi.org/10.12989/imm.2011.4.4.247
- Wen, X.D., Yang, T. and Hoffmann, R., Ashcroft, N.W., Martin, R.L., Rudin, S.P. and Zhu, J.X. (2012), "Graphane nanotubes", ACS Nanos, 6, 7142-7150. https://doi.org/10.1021/nn302204b
- Wu, G., Wang, J., Zeng, X.C., Hu, H. and Ding, F. (2010), "Controlling cross section of carbon nanotubes via selective hydrogenation", J. Phys. Chem. C., 114, 11753-11757.
Cited by
- Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method vol.51, pp.4, 2014, https://doi.org/10.12989/sem.2014.51.4.547
- Seismic control of buildings with active tuned mass damper through interval type-2 fuzzy logic controller including soil–structure interaction 2018, https://doi.org/10.1007/s42107-018-0016-5
- Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction vol.92, 2017, https://doi.org/10.1016/j.soildyn.2016.10.019
- Optimum tuned mass damper design in frequency domain for structures vol.21, pp.3, 2017, https://doi.org/10.1007/s12205-016-0829-2
- Optimum design of multiple positioned tuned mass dampers for structures constrained with axial force capacity pp.15417794, 2019, https://doi.org/10.1002/tal.1593
- Parametric study of pendulum type dynamic vibration absorber for controlling vibration of a two DOF structure vol.13, pp.1, 2013, https://doi.org/10.12989/eas.2017.13.1.051
- Self-control of high rise building L-shape in plan considering soil structure interaction vol.6, pp.3, 2013, https://doi.org/10.12989/csm.2017.6.3.229
- Active Tuned Mass Dampers for Control of Seismic Structures vol.19, pp.None, 2013, https://doi.org/10.37394/23205.2020.19.17
- Active structural control via metaheuristic algorithms considering soil-structure interaction vol.75, pp.2, 2020, https://doi.org/10.12989/sem.2020.75.2.175
- Optimum Design of Tuned Mass Dampers Using Colliding Bodies Optimization in Frequency Domain vol.44, pp.3, 2020, https://doi.org/10.1007/s40996-019-00296-6