DOI QR코드

DOI QR Code

A Study on the Air Travel Demand Forecasting using ARIMA-Intervention Model

Event Intervention이 일본, 중국 항공수요에 미치는 영향에 관한 연구

  • Received : 2013.10.30
  • Accepted : 2013.12.18
  • Published : 2013.12.31

Abstract

The purpose of this study is to anticipate the air travel demands over the period of 164 months, from January 1997 to August 2010 using ARIMA-Intervention modeling on the selected sample data. The sample data is composed of the number of the passengers who in the domestic route for Jeju route. In the analysis work of this study, the past events which are assumed to have affected the demands for the air travel routes to Jeju in different periods were used as the intervention variables. The impacts of such variables were reflected in the presupposed demand. The intervention variables used in this study are, respectively, the World Cup event in 2002 (from May to June), 2003 SARS outbreak (from April to May), Tsunami in January 2005, and the influenza outbreak from October to December 2009. The result of the above mentioned analysis revealed that the negative intervention events, like a global outbreak of an epidemic did have negative impact on the air travel demands in a risk aversion by the users of the aviation services. However, in case of the negative intervention events in limited area, where there are possible substituting destinations for the tourists, the impact was positive in terms of the air travel demands for substituting destinations due to the rational expectation of the users as they searched for other options. Also in this study, it was discovered that there is not a binding correlation between a nation wide mega-event, such as the World Cup games in 2002, and the increased air travel demands over a short-term period.

Keywords

References

  1. 곽대진, 류환경(2007) 개입모형을 이용한 노년층 해외여행수요전망, 관광연구 21(4), 2007, 61-81
  2. 김민수(2013). Event Intervention이 항공수요에 미치는 영향에 관한 실증 연구: 인천국제공항을 중심으로. 한국항공대학교 박사학위논문.
  3. 김수용.성병찬(2011). 개입모형을 이용한 한국의 입출국자수의 분석. 응용통계연구, 24(5), 735-743.
  4. 김영옥(2004). ARIMA 모형을 이용한 호텔객실 수요예측에 관한 실증적 연구: 서울 시내 특1급 C호텔을 중심으로. 세종대석사학위논문.
  5. 박상곤(2004). 테러가 관광에 미치는 영향 분석: 미국 9․11테러를 중심으로. 관광학연구, 28(2), 77-94
  6. 삼성경제연구소(2012), SERI 경제 포커스: 관광산업 돌발변수 자연재해, 제376호.
  7. 안경모․이광우(2005). ARIMA Intervention Model을 이용한 한국인 관광객의 태국여행수요 예측에 관한 연구. 한국호텔경영학회, 14(4), 273-288.
  8. 우경(2002). 개입-ARIMA모형을 이용한 지가변동 예측에 관한 연구: 지역별 하부 토지시장을 중심으로. 국토연구, 30(0), 51-64
  9. 윤석홍․최승회(2006). Terrorism Affects of North Korea on the Airlift Passenger Demand: American Tourists Visiting Korea. 국제지역연구, 10(1), 40-53.
  10. 이종원(1998). 계량경제학. 박영사.
  11. 이종원(2006). 경제예측론, 도서출판해남.
  12. 이충기(2003). 관광응용경제학. 일신사.
  13. 이충기․송학준(2007). 최적 시계열 수요예측 모델선정에 관한 연구. 관광학연구, 31(6): 289-311.
  14. 정동빈․원태연(2003). SPSS와 Decision Time을 활용한 시계열 자료와 단순화 분석, SPSS 아카데미.
  15. 정동빈․원태연(2003). SPSS와 Decision Time을 활용한 시계열자료와 단순화 분석II, SPSS 아카데미.
  16. 제갈돈․송건섭(1998). 간여시계열분석을 이용한 대구시 114유료화정책에 대한 응답비용 효과. 한국데이터정보과학회지, 9(2), 139-147.
  17. 한국문화관광연구원(2011). 일본 대지진에 따른 문화관광부문 영향 및 대응, 제2011-제5호.
  18. 한국항공진흥협회(2011). 항공시장여건과 정책방향. Airzineplus.
  19. 한국항공진흥협회(2012). 2012년 항공운송산업 전망
  20. 허향진․김희철(2001). 시계열 모형을 이용한 제주지역 관광객 수요예측: 개입모형을 중심으로. 호텔경영학 연구. 25(1), 27-41
  21. Box, G. E. P. & Tiao, G. C.(1975). Intervention Analysis with Application to Economic and Environmental Problems, Journal of American Statistical Association, 70, 70-79. https://doi.org/10.1080/01621459.1975.10480264
  22. Campbell, D. T. & Stanley, J. C.(1966). Experimental and Quasi-Experimental Design for Research, Chicago: Rand McNally.
  23. Glass, G. V.(1972). Estimating the effects of intervention into a nonstationary time series. American Educational Research Journal, 9(0), 463-477. https://doi.org/10.3102/00028312009003463
  24. Goh, B. H.(2005). The dynamic effect of the Asian financial crisis on construction demand and tender price levels in Singapore. Building and Environment, 40(2), 267-276. https://doi.org/10.1016/j.buildenv.2004.07.012
  25. Goh, Carey. & Law, Rob.(2002). Modeling and Forecasting Tourism Demand for Arricals with Stochastic Nonstationary and Seasonally and Intervention. Tourism Management. 23(5), 499-510 https://doi.org/10.1016/S0261-5177(02)00009-2
  26. Lai S. L. & W. L. Lu.(2005). Impact analysis of September 11 on air travel demand in the USA. Journal of Air Transport Management, 11(6), 455-458. https://doi.org/10.1016/j.jairtraman.2005.06.001
  27. Quayson, J. & Var, T.(1982). A tourism demand function for the Okanagan. BC. Tourism Management, 3(2), 108-115. https://doi.org/10.1016/0261-5177(82)90006-1
  28. 인천국제공항공사 항공통계 (http://www.airport.kr/iiac/pds/sta/Sta_04.iia)

Cited by

  1. ARIMA-개입모델을 이용한 항공기상정보 사용료 징수액 추정 및 적정성 연구 vol.26, pp.3, 2013, https://doi.org/10.12985/ksaa.2018.26.3.009
  2. 공항보안검색요원의 신기술 수용성이 공항보안업무의 직무만족도와 업무혁신성에 미치는 영향 vol.20, pp.2, 2013, https://doi.org/10.5762/kais.2019.20.2.394
  3. ARIMA-Intervention 시계열 모형을 이용한 인천국제공항 식음료 매출 분석 및 추정 연구 vol.20, pp.2, 2013, https://doi.org/10.5762/kais.2019.20.2.458