Abstract
In this paper, we propose a method of sentiment classification which uses Levenshtein distance. We generate BOW(Bag-Of-Word) applying Levenshtein daistance in sentiment features and used it as the training set. Then the machine learning algorithms we used were SVMs(Support Vector Machines) and NB(Naive Bayes). As the data set, we gather 2,385 reviews of movies from an online movie community (Daum movie service). From the collected reviews, we pick sentiment words up manually and sorted 778 words. In the experiment, we perform the machine learning using previously generated BOW which was applied Levenshtein distance in sentiment words and then we evaluate the performance of classifier by a method, 10-fold-cross validation. As the result of evaluation, we got 85.46% using Multinomial Naive Bayes as the accuracy when the Levenshtein distance was 3. According to the result of the experiment, we proved that it is less affected to performance of the classification in spelling errors in documents.
본 논문에서는 레빈쉬타인 거리(Levenshtein distance)를 이용한 감성 분류 방법을 제안한다. 감성 자질에 레빈쉬타인 거리를 적용하여 BOW(Back-Of-Word)를 생성하고 이를 학습 자질로 사용한다. 학습 모델은 지지벡터기계(support vector machines, SVMs)와 나이브 베이즈(Naive Bayes)를 이용하였다. 실험 데이터로는 다음 영화 사이트로부터 영화평을 수집하였으며, 수집한 영화평은 총 2,385건이다. 수집된 영화평으로부터 감성 어휘를 수작업을 통해 수집하였으며 총 778개 어휘가 선별되었다. 실험에서는 감성 어휘에 레빈쉬타인 거리를 적용한 BOW를 이용하여 기계학습을 수행하였으며, 10-fold-cross validation 방식으로 분류기의 성능을 평가하였다. 평가 결과는 레빈쉬타인 거리가 3일 때 다항 나이브 베이즈(Muitinomial Naive Bayes) 분류기에서 85.46%의 가장 높은 정확도를 보였다. 실험을 통하여 본 논문에서 제안하는 방법이 문서 내의 철자 오류에 대해서도 분류 성능에 영향을 적게 받음을 알 수 있었다.