DOI QR코드

DOI QR Code

Estimation of Family Variation and Genetic Parameter for Growth Traits of Pacific Abalone, Haliotis discus hannai on the 3th Generation of Selection

선발 3세대 북방전복의 성장형질에 대한 가계변이 및 유전모수 추정

  • 박종원 (국립수산과학원 육종연구센터) ;
  • 박철지 (국립수산과학원 육종연구센터) ;
  • 이정호 (국립수산과학원 육종연구센터) ;
  • 노재구 (국립수산과학원 육종연구센터) ;
  • 김현철 (국립수산과학원 육종연구센터) ;
  • 황인준 (국립수산과학원 육종연구센터) ;
  • 김성연 (국립수산과학원 육종연구센터)
  • Received : 2013.11.25
  • Accepted : 2013.12.19
  • Published : 2013.12.31

Abstract

The purpose of this paper is to compare and analyze family variations for growth-related traits of Pacific abalone, Haliotis discus hannai. Genetic parameters and breeding values were estimated using all measurement data like shell length, shell width, and total weight as 18-month-old growth traits of 5,334 individuals of selected third generation's Pacific abalone produced in 2011. Family variations of 865 individuals of the upper 10 families with the largest number were inspected. Overall mean in phenotypic traits of 18-month-old Pacific abalone which was investigated in this study showed 54.5 mm of shell length, 36.8 mm of shell width and 21.3 g of total weight respectively. And, variation coefficient of total weight was 51.0%, so variability of data was shown to be higher than 21.1% of shell length and 20.7% of shell width. The family effects showed significant difference by each family (p < 0.05), and heritability of shell length, shell width, and total weight was medium with 0.370, 0.382, and 0.367 respectively. So it is considered that family selection is more advantageous than individual selection. On the basis of breeding values of estimated shell length and total weight, to investigate distribution and ranking by each individual about the upper 10 families with the largest number of individuals, the values were used by being changed into standardized breeding values. Based on shell length, it was investigated that the individual number of the upper 5.4% is 152 and the number of the lower 5.4% is 8. In case of total weight, it was inspected that the individual number of the upper 5.4% is 164 and the number of the lower 5.4% is 1. Like these, phenotypic and genetic diverse variations between families could be checked. By estimating genetic parameters and breeding values of a population for production of the next generation, if they are used properly in selection and mating, it is considered that more breeding effects can be expected.

본 연구에서는 전복의 성장형질에 대한 가계변이를 비교분석하기 위한 목적으로 2011년에 생산된 선발 3세대 북방전복 5,334마리에 대한 18개월령 성장형질인 각장, 각폭 및 중량의 전체 계측자료를 이용하여 유전모수와 육종가를 추정하였으며, 그 중 개체수가 많은 상위 10가계의 865마리 대한 가계변이를 조사하였다. 가계효과를 추정하기 위해 개체모형에 근거한 선형모형을 이용하였고, 유전모수 및 육종가는 생산시기를 고정 효과로 처리하고, EM-REML algorithm을 전산 프로그램화한 REMLF90을 이용하여 최적선형불편예측법에 의해 추정하였다. 본 연구에서 조사된 18개월령 북방전복의 표현형에 있어 각장, 각폭 및 중량의 전체평균은 각각 54.5 mm, 36.8 mm 및 21.3 g로 나타났고, 중량의 변이계수가 51.0%로 나타나 각장의 21.1% 및 각폭의 20.7% 보다 자료의 변동성이 크게 나타났다. 개체수가 많은 상위 10가계를 대상으로 각장과 중량의 관계를 산점도로 표시한 결과 상관관계식이 TW = $0.0002SL^{2.8796}$ ($R^2$ = 0.9864) 과 같이 지수곡선식으로 추정되었다. 가계효과에 있어서는 각 가계별로 유의적인 차이를 보였으며 (p < 0.05), 각장, 각폭 및 중량의 유전력은 각각 0.370, 0.382 및 0.367로 중도의 유전력을 보여 개체선발 보다는 가계선발이 유리할 것으로 사료된다. 또한 각 형질 간 상관계수는 매우 높은 정의 상관관계를 보여 한 형질만의 개량으로 다른 형질의 개량효과를 기대할 수 있을 것으로 판단된다. 추정된 각장 및 중량의 육종가를 토대로 개체수가 많은 상위 10가계에 대한 각 개체별 분포와 순위를 조사하기 위해 표준화육종가로 변환하여 이용하였으며, 각장을 기준으로 상위 5.4%의 개체 수는 152마리, 하위 5.4%의 개체 수는 8마리로 조사되었고, 중량의 경우 상위 5.4%의 개체 수는 164마리, 하위 5.4%의 개체 수는 1마리로 조사되었다. 이와 같이 가계간의 표현형 및 유전적인 다양한 변이를 확인 할 수 있었고, 다음 세대 생산을 위한 모집단의 유전모수와 육종가를 추정하여 선발과 교배에 적절히 이용한다면 보다 나은 육종효과를 기대할 수 있을 것으로 사료된다.

Keywords

References

  1. Argue, B.J., Arce, S.M., Lotz, J.M. and Moss, S.M. (2002) Selective breeding of pacific white shrimp (Litopenaeus vannamei) for growth and resistance to taura syndrome virus. Aquaculture, 204: 447-460. https://doi.org/10.1016/S0044-8486(01)00830-4
  2. Choe, M.K. and Yamazaki, F. (1998) Estimation of heritabilities of growth traits, and phenotypic and genetic correlations in juvenile masu salmon Oncorhynchus masou. Fisheries Science, 64: 903-908. https://doi.org/10.2331/fishsci.64.903
  3. Choe, M.K., Han, S.J., Yang, S.G., Won, S.W., Park, C.J. and Yeo, I.K. (2007) Estimation of genetic parameters for growth-related traits of two Korean abalone subspecies, Haliotis discus hannai and H. discus discus, by using multiple traits of animal model in early growth period. The Korean Journal Malacology, 23(2): 217-225.
  4. Choe, M.K., Yang, S.G., Won, S.H., Park, C.J., Han, S.J., and Yeo, I.K. (2009) Estimation of genetic parameters for growth-related traits in 9-month old of two Korean abalone subspecies, Haliotis discus hannai and H. discus discus, by using Multiple traits of animal model. The Korean Journal Malacology, 24(2): 121-130.
  5. Gjedrem, T. (1983) Genetic variation in quantitative traits and selective breeding in fish and shellfish. Aquaculture, 33: 51-72. https://doi.org/10.1016/0044-8486(83)90386-1
  6. Gjedrem, T. (1997) Selective breeding to improve aquaculture production. World Aquaculture, 28: 33-45.
  7. Gjedrem, T. (2000) Generic improvement of cold-water species. Aquaculture Research, 31: 25-33. https://doi.org/10.1046/j.1365-2109.2000.00389.x
  8. Gjerde, B., Terjesen, B.F., Barr, Y., Lein, I., Thorland, I. (2004) Genetic variation for juvenile growth and survival in Atlantic cod (Gadus morhua). Aquaculture, 236: 167-177. https://doi.org/10.1016/j.aquaculture.2004.03.004
  9. Groeneveld, E. and Kovac, M. (1990) A note on multiple solutions in multivariate restricted maximum likelihood covariance component estimation. Journal of Dairy Science, 73: 2221-2229. https://doi.org/10.3168/jds.S0022-0302(90)78902-3
  10. Hara, M. and Kikuchi, S. (1992) Increasing growth rate of abalone, Haliotis discus hannai, using selection techniques. NOAA Technical report, 106: 21-26.
  11. Henderson, C.R. (1974) General flexibility of linear model techniques for sire evaluation. Journal of Dairy Science, 57: 963-972. https://doi.org/10.3168/jds.S0022-0302(74)84993-3
  12. Henderson, C.R. (1986) Recent developments in variance and covariance estimation. Journal of Animal Science, 63: 208-216. https://doi.org/10.2527/jas1986.631208x
  13. Jonasson, J., Stefansson, S.E., Gudnason, A. and Steinarsson, A. (1999) Genetic variation for survival and shell length of cultured red abalone (Haliotis rufescens) in Iceland. Journal of Shellfish Research, 18(2): 621-625.
  14. Kim, H.C., Noh, J.K., Lee, J.H., Park, C.J., Min, B.H., Kim, K.K., Kim, J.H., Lee, J.G. and Myeong, J.I. (2011) Estimation of Genetic Parameters of Growth-related Traits from 11-month-old Olive Flounder (Paralichthys olivaceus) Base Population in which Wild Flounder Broodstocks were Introduced. Journal of Animal Science and Technology, 53(2): 99-106. https://doi.org/10.5187/JAST.2011.53.2.99
  15. Lucas, T., Macbeth, M., Degnan, S.M., Knibb, W. and Degnan, B.M. (2006) Heritability estimates for growth in the tropical abalone Haliotis asinina using microsatellites to assign parentage. Aquaculture, 259: 146-152. https://doi.org/10.1016/j.aquaculture.2006.05.039
  16. Misztal, I. (1990) Restricted maximum likelihood estimation of variance components in animal model using sparse matrix inversion and a supercomputer. Journal of Dairy Science, 73: 163-172. https://doi.org/10.3168/jds.S0022-0302(90)78660-2
  17. NFRDI (2008) National fisheries research and development institute. Standard manual of abalone culture, Busan, Korea.
  18. Olesen. I., Gjedrem, T., Bentsen, H.B., Gjerde, B. and Rye, M. (2003) Breeding programs for sustainable aquaculture. Journal of Applied Aquaculture, 13: 179-204. https://doi.org/10.1300/J028v13n03_01
  19. Park, C.J., Lee, J.H., Noh, J.K., Kim, H.C., Park, J.W., Hwang, I.J. and Kim, S.Y. (2012) Growth of Pacific abalone, Haliotis discus hannai, using selection breeding techniques. The Korean Journal Malacology, 28(4): 343-347. https://doi.org/10.9710/kjm.2012.28.4.343
  20. Park, Y.I., KIM, J.H. and HAN, J.Y. (1999) Science of animal breeding. Korean national open university press. pp. 156-157.
  21. Quass, R.L. and Pollak, E.J. (1980) Mixed model methodology for farm and ranch beef cattle testing programs. Journal of Animal Science, 51: 1277-1287. https://doi.org/10.2527/jas1981.5161277x
  22. SU, G.S., Liljedahl, L.E., Gall, G.A.E. (1996) Genetic and environmental variation of body weight in rainbow trout (Oncorhynchus mykiss). Aquaculture, 144: 71-80. https://doi.org/10.1016/S0044-8486(96)01306-3
  23. Viana, M.T. (2002) Abalone Aquaculture, An overview. World Aquaculture, pp 34-39.
  24. Yang, S.G. (2007) Genetic diversity and evaluation for selective breeding in pacific abalone, Haliotis discus hannai. Ph. D. thesis, University of Dong-eui.
  25. Zheng H., Zhang G., Liu X. and Guo X. (2006) Sustained response to selection in an introduced population of the hermaphroditic bay scallop Argopecten irradians irradians Lamarck (1819). Aquaculture, 255: 579-585. https://doi.org/10.1016/j.aquaculture.2005.11.037

Cited by

  1. 북방전복 (Haliotis discus hannai) 과 둥근전복 (H. discus discus) 의 종내 교잡에 따른 순종과 교잡종의 성장과 생존 비교 vol.34, pp.1, 2018, https://doi.org/10.9710/kjm.2018.34.1.31
  2. 육종가 기반 북방전복(Haliotis discus hannai) 성장형질의 유전적 개량량 추정 vol.53, pp.4, 2020, https://doi.org/10.5657/kfas.2020.0544