References
- D. Bennis, A note on Gorenstein flat dimension, Algebra Colloq. 18 (2011), no. 1, 155-161. https://doi.org/10.1142/S1005386711000095
- D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra 210 (2007), no. 2, 437-445. https://doi.org/10.1016/j.jpaa.2006.10.010
- H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
- L. W. Christensen, Gorenstein Dimensions, Lecture Notes in Math., 1747, Springer- Verlag, Berlin, 2000.
- R. R. Colby, Rings which have flat injective modules, J. Algebra 35 (1975), 239-252. https://doi.org/10.1016/0021-8693(75)90049-6
- N. Q. Ding and J. L. Chen, The flat dimensions of injective modules, Manuscripta Math. 78 (1993), no. 2, 165-177. https://doi.org/10.1007/BF02599307
- N. Q. Ding and J. L. Chen, On copure flat modules and flat resolvents, Comm. Algebra 24 (1996), no. 3, 1071-1081. https://doi.org/10.1080/00927879608825623
- N. Q. Ding and J. L. Chen, Coherent rings with finite self-FP-injective dimension, Comm. Algebra 24 (1996), no. 9, 2963-2980. https://doi.org/10.1080/00927879608825724
- E. E. Enochs and O. M. G. Jenda, Copure injective resolutions, flat resolvents and dimensions, Comment. Math. Univ. Carolin. 34 (1993), no. 2, 203-211.
- E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634
- E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin, 2000.
- E. E. Enochs, O. M. G. Jenda, and J. A. Lopez-Ramos, The existence of Gorenstein flat covers, Math. Scand. 94 (2004), no. 1, 46-62.
- E. E. Enochs, O. M. G. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1-9.
- C. Faith, Algebra I: Rings, Modules and Categories, Springer, Berlin-Heidelberg-New York, 1981.
- D. J. Fieldhouse, Character modules, dimension and purity, GlasgowMath. J. 13 (1972), 144-146.
- Z. H. Gao, On GI-injective modules, Comm. Algebra 40 (2012), no. 10, 3841-3858. https://doi.org/10.1080/00927872.2011.597809
- H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007
- L. X. Mao and N. Q. Ding, Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl. 7 (2008), no. 4, 491-506. https://doi.org/10.1142/S0219498808002953
- J. J. Rotman, An Introduction to Homological Algebra, Academic Press, 1979.
- R. Sazeedeh, Strongly torsion free, copure flat and Matlis reflexive modules, J. Pure Appl. Algebra 192 (2004), no. 1-3, 265-274. https://doi.org/10.1016/j.jpaa.2004.01.010
- J. Z. Xu, Flat Covers of Modules, Lecture Notes in Math., 1634, Springer-Verlag, Berlin, 1996.
- X. Y. Yang and Z. K. Liu, Strongly Gorenstein projective, injective and flat modules, J. Algebra 320 (2008), no. 7, 2659-2674. https://doi.org/10.1016/j.jalgebra.2008.07.006
Cited by
- Homological Properties Relative to Injectively Resolving Subcategories vol.58, pp.04, 2015, https://doi.org/10.4153/CMB-2015-058-3