DOI QR코드

DOI QR Code

ON GI-FLAT MODULES AND DIMENSIONS

  • Gao, Zenghui (College of Mathematics Chengdu University of Information Technology)
  • Received : 2012.03.20
  • Published : 2013.01.01

Abstract

Let R be a ring. A right R-module M is called GI-flat if $Tor^R_1(M,G)=0$ for every Gorenstein injective left R-module G. It is shown that GI-flat modules lie strictly between flat modules and copure flat modules. Suppose R is an $n$-FC ring, we prove that a finitely presented right R-module M is GI-flat if and only if M is a cokernel of a Gorenstein flat preenvelope K ${\rightarrow}$ F of a right R-module K with F flat. Then we study GI-flat dimensions of modules and rings. Various results in [6] are developed, some new characterizations of von Neumann regular rings are given.

Keywords

References

  1. D. Bennis, A note on Gorenstein flat dimension, Algebra Colloq. 18 (2011), no. 1, 155-161. https://doi.org/10.1142/S1005386711000095
  2. D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra 210 (2007), no. 2, 437-445. https://doi.org/10.1016/j.jpaa.2006.10.010
  3. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
  4. L. W. Christensen, Gorenstein Dimensions, Lecture Notes in Math., 1747, Springer- Verlag, Berlin, 2000.
  5. R. R. Colby, Rings which have flat injective modules, J. Algebra 35 (1975), 239-252. https://doi.org/10.1016/0021-8693(75)90049-6
  6. N. Q. Ding and J. L. Chen, The flat dimensions of injective modules, Manuscripta Math. 78 (1993), no. 2, 165-177. https://doi.org/10.1007/BF02599307
  7. N. Q. Ding and J. L. Chen, On copure flat modules and flat resolvents, Comm. Algebra 24 (1996), no. 3, 1071-1081. https://doi.org/10.1080/00927879608825623
  8. N. Q. Ding and J. L. Chen, Coherent rings with finite self-FP-injective dimension, Comm. Algebra 24 (1996), no. 9, 2963-2980. https://doi.org/10.1080/00927879608825724
  9. E. E. Enochs and O. M. G. Jenda, Copure injective resolutions, flat resolvents and dimensions, Comment. Math. Univ. Carolin. 34 (1993), no. 2, 203-211.
  10. E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634
  11. E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin, 2000.
  12. E. E. Enochs, O. M. G. Jenda, and J. A. Lopez-Ramos, The existence of Gorenstein flat covers, Math. Scand. 94 (2004), no. 1, 46-62.
  13. E. E. Enochs, O. M. G. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1-9.
  14. C. Faith, Algebra I: Rings, Modules and Categories, Springer, Berlin-Heidelberg-New York, 1981.
  15. D. J. Fieldhouse, Character modules, dimension and purity, GlasgowMath. J. 13 (1972), 144-146.
  16. Z. H. Gao, On GI-injective modules, Comm. Algebra 40 (2012), no. 10, 3841-3858. https://doi.org/10.1080/00927872.2011.597809
  17. H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007
  18. L. X. Mao and N. Q. Ding, Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl. 7 (2008), no. 4, 491-506. https://doi.org/10.1142/S0219498808002953
  19. J. J. Rotman, An Introduction to Homological Algebra, Academic Press, 1979.
  20. R. Sazeedeh, Strongly torsion free, copure flat and Matlis reflexive modules, J. Pure Appl. Algebra 192 (2004), no. 1-3, 265-274. https://doi.org/10.1016/j.jpaa.2004.01.010
  21. J. Z. Xu, Flat Covers of Modules, Lecture Notes in Math., 1634, Springer-Verlag, Berlin, 1996.
  22. X. Y. Yang and Z. K. Liu, Strongly Gorenstein projective, injective and flat modules, J. Algebra 320 (2008), no. 7, 2659-2674. https://doi.org/10.1016/j.jalgebra.2008.07.006

Cited by

  1. Homological Properties Relative to Injectively Resolving Subcategories vol.58, pp.04, 2015, https://doi.org/10.4153/CMB-2015-058-3