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HOLOMORPHIC MEAN LIPSCHITZ FUNCTIONS

ON THE UNIT BALL OF C
n

Ern Gun Kwon, Hong Rae Cho, and Hyungwoon Koo

Abstract. On the unit ball of Cn, the space of those holomorphic func-
tions satisfying the mean Lipschitz condition∫ 1

0

ωp(t, f)
q

dt

t1+αq
< ∞

is characterized by integral growth conditions of the tangential derivatives
as well as the radial derivatives, where ωp(t, f) denotes the Lp modulus
of continuity defined in terms of the unitary transformations of Cn.

1. Introduction

Let B = Bn be the open unit ball of Cn and S be the boundary of B. Let
v be the Lebesgue volume measure on Cn = R2n and σ be the surface area
measure on S normalized to be σ(S) = 1. We denote by Hp(B), 1 ≤ p < ∞,
the Hardy space on B. We use the customary notation

‖f‖Hp(B) = sup
0<r<1

Mp(r, f) and Mp(r, g) =

(
∫

S

|g(rζ)|p dσ(ζ)

)1/p

respectively for holomorphic f and measurable g on B. We will denote B1 by
D.

Concerning the boundary smoothness of Hp(D) functions, it is known that
the growth rate of

ωp(t, f) =

(

sup
|h|≤t

∫ π

−π

|f(ei(θ+h))− f(eiθ)|pdθ
)1/p
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is closely related to that of Mp(r, f
′). To be more precise, for f ∈ Hp(D) and

1 ≤ q < ∞, 0 < α < 1, the mean Lipschitz condition
∫ 1

0

ωp(t, f)
q dt

t1+αq
< ∞(1.1)

is equivalent to the Besov condition
∫ 1

0

Mp(r, f
′)q (1 − r)(1−α)q−1dr < ∞.(1.2)

Hardy and Littlewood ([6], see also Chapter 5 of [4]) initiated this equivalence
by considering the limiting case q = ∞, then followed several generalizations.
We refer to [5] for general exponents and also refer to [12] for the corresponding
results on the upper half space R

n+1
+ in the context of harmonic functions.

The goal of this paper is to establish the n-variable version of the equivalence
(1.1) ⇐⇒ (1.2). We adapt the Lp-modulus of continuity ωp(t, f) of f as

ωp(t, f) = sup

{

(
∫

S

|f(Uζ)− f(ζ)|pdσ(ζ)
)1/p

: U ∈ U , ‖U − I‖ ≤ t

}

,

where U denotes the group of all unitary transformations on Cn, I denotes the
identity of U , and ‖U − I‖ := supζ∈S |Uζ − ζ|. We consider the space Λp,q

α (B)
which is defined to be the set of f ∈ Hp(B) satisfying (1.1). Holomorphic Besov
spaces satisfying growth condition of types (1.2) for several variables have been
studied extensively in the literature, specially when p = q ([2], [3], [8]). On the
other hand, Λp,q

α (B) have not been studied adequately in their full nature as
far as we are aware of.

We denote Rf the radial derivative of f in B defined by

Rf =

n
∑

j=1

zj
∂

∂zj
f.

For 1 ≤ i, j ≤ n, we define the tangential derivatives, Tij and T ij , by

Tij = z̄i
∂

∂zj
− z̄j

∂

∂zi
, T ij = zi

∂

∂zj
− zj

∂

∂zi
.

Given a multi-index ν = (ν1, . . . , νn), we use the notation T ν to mean

T ν1
i1j1

· · ·T νn
injn

for some choice of i1, . . . , in and j1, . . . , jn, where Tij is either Tij or T ij . We
have the following characterization of Λp,q

α (B) as our main result.

Theorem 1.1. Let 0 < α < 1 and 1 ≤ p, q < ∞. Then, for f ∈ Hp(B) the

following are equivalent.

(i)

∫ 1

0

ωp(t, f)
q dt

t1+αq
< ∞.
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(ii)

∫ 1

0

Mp(r,Rf)q (1− r)(1−α)q−1dr < ∞.

(iii)
∑

|ν|=2

∫ 1

0

Mp(r, T
νf)q (1− r)(1−α)q−1dr < ∞.

Moreover, if 0 < α < 1
2 , then these are equivalent to

(iv)
∑

|ν|=1

∫ 1

0

Mp(r, T
νf)q (1− r)(1/2−α)q−1dr < ∞.

Furthermore, all the left side quantities are equivalent up to addition by

‖f‖qHp(B).

We also prove a higher order derivative version of Theorem 1.1. For the
precise statements and their generalizations, see Theorem 2.1 and Theorem
4.1. Note that our theorem not only proves the equivalences of the holomor-
phic mean Lipschitz spaces with the appropriate holomorphic Besov spaces but
also reveals the usual phenomenon that the tangential derivatives behave twice
better than the radial derivative.

We start with proving the equivalences between Besov spaces defined in
terms of the tangential derivatives and those defined in terms of the radial
derivatives, in Section 2. We then prove Theorem 1.1 in Section 4 after prepar-
ing a priori estimates in Section 3.

Throughout this paper, the exponents p and q range over 1 ≤ p, q < ∞
and k, l denote positive integers. Functions denoted by f is assumed to be
holomorphic in B. For nonnegative quantities X and Y , we write X . Y if
there exists an absolute constant C > 0 such that X ≤ CY . Also, we write
X ≈ Y if X . Y . X .

Acknowledgements. The authors would like to express thanks to Professors
M. Pavlović and K. Zhu for helpful comments.

2. Equivalence between derivatives

In this section, we establish parts of Theorem 1.1 by showing equivalences be-
tween mixed norms of the radial derivatives and those of the tangential deriva-
tives.

For the notational convenience, we denote Lp,q
β (g), β > 0, by

(2.1) Lp,q
β (g) =

(
∫ 1

0

Mp(r, g)
q (1 − r)βq−1dr

)1/q

.

Theorem 2.1. Let 0 < α < ∞. Then for f ∈ Hp(B) the following are

equivalent.

(i) Lp,q
k−α(Rkf) < ∞ for some k > α.

(ii) Lp,q
k−α(Rkf) < ∞ for all k > α.

(iii)
∑

|ν|=k L
p,q
k/2−α(T

νf) < ∞ for some k > 2α.



192 ERN GUN KWON, HONG RAE CHO, AND HYUNGWOON KOO

(iv)
∑

|ν|=k L
p,q
k/2−α(T

νf) < ∞ for all k > 2α.

Moreover, if 0 < α < 1
2 , then these are equivalent to

(v)
∑

|ν|=1 L
p,q
1/2−α(T

νf) < ∞.

Furthermore, all the left side quantities are equivalent up to addition by

||f ||Hp(B).

Before proving Theorem 2.1, we describe some prerequisites on comparing
integral means, which might have been known to experts. For the conveniences
of the readers, we include proofs for which we could not find references.

Recall the definition of the non-isotropic weight of a differential operator.
We assign weight 1 to R, while weight 1/2 is given to Tij and T ij each. We
will consider differential operators X appearing as composition

X = X1 · · ·Xk,(2.2)

where each Xl is R or one of Tij or T ij . For such an operator, its weight is
defined to be the sum of each weights of Xl.

For z ∈ B and δ > 0, let P (z, δ) be the non-isotropic polydisc defined as
follows. If z = rζ, 0 ≤ r < 1, ζ ∈ S, pick η2, . . . , ηn so that {ζ, η2, . . . , ηn} is
an orthonormal basis of Cn. Then

P (z, δ) =







w = z + λζ +

n
∑

j=2

λjηj : |λ| < δ, |λj | < δ1/2, j = 2, . . . , n







.

For ζ ∈ S and 0 < δ < 1, let

Q(ζ, δ) = {η ∈ S : |1− 〈η, ζ〉|1/2 < δ}.
Then, it is not hard to see that there is a constant ǫ > 0 such that for all
1/2 < r < 1 and δ = 1− r

P (rζ, ǫδ) ⊂
{

tη : r − δ

4
< t < r +

δ

4
, η ∈ Q(ζ,

√
δ)

}

.(2.3)

The following is a weak version of Lemma 2.5 of [1].

Lemma 2.2 ([1]). Let X and Y be the differential operators of the form (2.2)
with the weight of X being m. Then we have

|XY f(z)|p .
1

δn+1+mp

∫

P (z,δ)

|Y f(w)|pdv(w)(2.4)

for P (z, δ) ⊂ B.

Corollary 2.3. Let 1/2 < r < 1. Let X and Y be the differential operators of

the form (2.2) with the weight of X being m. Then we have

Mp(r,XY f) .
Mp(r̃, Y f)

(1− r)m
, r̃ = r + (1 − r)/4.
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Proof. Let δ = 1 − r. Choose ǫ > 0 sufficiently small to have (2.3). Since

σ(Q(η,
√
δ)) . δn, by (2.4) and Fubini’s theorem, we have

Mp
p (r,XY f) .

1

δpm+n+1

∫

ζ∈S

∫

w∈P (rζ,ǫδ)

|Y f(w)|pdv(w)dσ(ζ)

.
1

δpm+n+1

∫

ζ∈S

∫ r+δ/4

r−δ/4

∫

η∈Q(ζ,
√
δ)

|Y f(tη)|pdσ(η)dtdσ(ζ)

=
1

δpm+n+1

∫ r+δ/4

r−δ/4

∫

η∈S

σ(Q(η,
√
δ))|Y f(tη)|pdσ(η)dt

.
1

δpm+1

∫ r+δ/4

r−δ/4

Mp
p (t, Y f)dt.

Since the radial or the tangential differentiation preserves the harmonicity of
f , the increasing property of Mp(t, Y f) in t completes the proof. �

Let R =
∑n

j=1 z̄j
∂

∂z̄j
. Then a straightforward calculation shows that RR =

RR and

RTij = TijR− Tij , RT ij = T ijR+ T ij ,

RTij = TijR+ Tij , RT ij = T ijR− T ij .

This implies

(R+R)X = X(R+R)(2.5)

for the differential operator X of the form (2.2).

Lemma 2.4. Let X be the differential operators of the form (2.2). Then, for

1/2 < r < 1 we have

Mp(r,Xf) . sup
|z|<1/2

|f(z)|+
∫ r

0

(r − t)k−1Mp(t,XRkf)dt,(2.6)

and

Mp(r, T
νf) . sup

|z|<1/2

|f(z)|+
∑

|µ|=|ν|+k

∫ r

0

(r − t)k/2−1Mp(t, T
µf)dt.(2.7)

Proof. By the fundamental theorem of calculus together with (2.5),

Mp(r,Xf) . sup
|z|<1/3

|Xf(z)|+
(
∫

S

|Xf(rζ) −Xf(ζ/4)|pdσ(ζ)
)1/p

. sup
|z|<1/3

|Xf(z)|+
{

∫

S

(

∫ r

1/4

|(R+R)Xf(tζ)|dt
)p

dσ(ζ)

}1/p

= sup
|z|<1/3

|Xf(z)|+
{

∫

S

(

∫ r

1/4

|XRf(tζ)|dt
)p

dσ(ζ)

}1/p

.
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Applying Minkowski’s integral inequality to the last term,

Mp(r,Xf) . sup
|z|<1/3

|Xf(z)|+
∫ r

1/4

Mp(t,XRf)dt.(2.8)

By the harmonicity of XRf and by the Cauchy estimate of the harmonic func-
tions, we have sup|z|<1/3 |Xf(z)| . sup|z|<1/2 |f(z)|. If we apply the inequality

(2.8) to the right side integrand with XRf instead of Xf , we have

Mp(r,Xf) . sup
|z|<1/2

|f(z)|+
∫ r

0

∫ t

0

Mp(s,XR2f)dsdt

= sup
|z|<1/2

|f(z)|+
∫ r

0

(r − s)Mp(s,XR2f)ds.

Repeating this k times we get (2.6).
Next, apply (2.6) with X = T ν to get

Mp(r, T
νf) . sup

|z|<1/2

|f(z)|+
∫ r

0

(r − s)k−1Mp(s, T
νRkf)ds.

Noting the identity

−
∑

i6=j

T ijTijf(z) = 2(n− 1)Rf(z)(2.9)

valid for all holomorphic f on B, it follows that

Mp(r, T
νf) . sup

|z|<1/2

|f(z)|+
∑

|µ|=|ν|+2k

∫ r

0

(r − s)k−1Mp(s, T
µf)ds

= sup
|z|<1/2

|f(z)|+
∑

|µ|=|ν|+2k

rk
∫ 1

0

(1− t)k−1Mp(t, T
µfr)dt,

where fr(z) = f(rz). Applying Corollary 2.3 to the last integrand, we obtain

Mp(r, T
νf) . sup

|z|<1/2

|f(z)|+
∑

|µ|=|ν|+k

rk
∫ 1

0

(1− t)k/2−1Mp(t̃, T
µfr)dt.

Now the change of the variables t̃ = t+ (1 − t)/4 → s/r proves (2.7). �

Corollary 2.5. Let X be the differential operators of the form (2.2) with weight

m. If k > m, then for 1/2 < r < 1 we have

Mp(r,Xf) . sup
|z|<1/2

|f(z)|+Mp(r,Rkf).

Proof. Let fr(z) = f(rz). By (2.6) and Corollary 2.3 with the increasing
property of Mp(t,Rfr), we have

Mp(r,Xf) . sup
|z|<1/2

|f(z)|+
∫ r

0

(r − t)k−1Mp(t,XRkf)dt
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= sup
|z|<1/2

|f(z)|+ rk
∫ 1

0

(1 − t)k−1Mp(t,XRkfr)dt

. sup
|z|<1/2

|f(z)|+
∫ 1

0

(1− t)k−m−1Mp(t̃,Rkfr)dt

. sup
|z|<1/2

|f(z)|+Mp(r,Rkf).
�

Lemma 2.6 (Hardy’s inequalities [12]). Let h be a non-negative function and

r > 0. Then

(i)

{
∫ 1

0

(
∫ x

0

h(y)dy

)p

x−r−1dx

}1/p

≤ p

r

(
∫ 1

0

(yh(y))py−r−1dy

)1/p

;

(ii)

{

∫ 1

0

(
∫ 1

x

h(y)dy

)p

xr−1dx

}1/p

≤ p

r

(
∫ 1

0

(yh(y))pyr−1dy

)1/p

.

Corollary 2.7. Let a, b > 0. Then for non-negative increasing function F
∫ 1

0

(1− r)a−1

(
∫ r

0

(r − t)b−1F (t)dt

)p

dr .

∫ 1

0

(1− r)a+bp−1F (r)pdr.

Proof. By a change of variables,

(2.10)

∫ 1

0

(1− r)a−1

(
∫ r

0

(r − t)b−1F (t)dt

)p

dr

=

∫ 1

0

xa−1

(
∫ 1−x

0

(1− x− t)b−1F (t)dt

)p

dx

=

∫ 1

0

xa−1

(
∫ 1

x

(y − x)b−1F (1− y)dy

)p

dx.

For the inner integral on the right side of (2.10), by setting δ(x) = min{2x, 1}
and by using the increasing property of F , we have

(2.11)

∫ 1

x

(y − x)b−1F (1− y)dy

=

∫ δ(x)

x

(y − x)b−1F (1− y)dy +

∫ 1

δ(x)

(y − x)b−1F (1− y)dy

≤ 1

b
xbF (1− x) + 2

∫ 1

δ(x)

yb−1F (1− y)dy

≤ 1

b
xbF (1− x) + 2

∫ 1

x

yb−1F (1− y)dy,

where we used (y − x)b ≤ yb and (y − x)−1 ≤ 2/y in the first inequality.
Therefore, joining (2.10) and (2.11) we have

∫ 1

0

(1− r)a−1

(
∫ r

0

(r − t)b−1F (t)dt

)p

dr
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.

∫ 1

0

xa−1+bpF (1− x)pdx+

∫ 1

0

xa−1

(
∫ 1

x

yb−1F (1− y)dy

)p

dx.

An application of Lemma 2.6 and a change of variables complete the proof. �

We now are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We prove (i) ⇐⇒ (ii), (iii) ⇐⇒ (iv), (ii) =⇒ (iii) &
(v), (iv) =⇒ (i) and (v) =⇒ (i).

(i) ⇐⇒ (ii): It suffices to show (i) =⇒ (ii) since (ii) =⇒ (i) is trivial.
Let k > α be fixed. We show Lp,q

l−α(Rlf) . ||f ||Hp +Lp,q
k−α(Rkf) for all integer

l > α. The case l = k is obvious. If l < k, then by (2.6) of Lemma 2.4 and
Corollary 2.7

Lp,q
l−α(Rlf)

=

(
∫ 1

0

(1− r)(l−α)q−1 Mp(r,Rlf)q dr

)1/q

. sup
|z|<1/2

|f(z)|+
{
∫ 1

0

(1− r)(l−α)q−1

(
∫ r

0

(r − t)k−l−1Mp(t,Rkf)dt

)q

dr

}1/q

. sup
|z|<1/2

|f(z)|+
(
∫ 1

0

(1 − r)(k−α)q−1 Mp(r,Rkf)q dr

)1/q

. ||f ||Hp + Lp,q
k−α(Rkf).

If l > k, then by Corollary 2.3 with X = Rl−k together with the change of
variables r̃ → t, it is easy to see that

Lp,q
l−α(Rlf) = Lp,q

l−α(Rl−kRkf) . ||f ||Hp + Lp,q
k−α(Rkf).

(iii) ⇐⇒ (iv): The proof is analogous to the preceding one.
(ii) =⇒ (iii) & (v): Let |ν| = k > 2α and l be another positive integer

greater than α. Then by (2.6) of Lemma 2.4

(
∫ 1

0

(1 − r)(k/2−α)q−1 M q
p (r, T

νf)dr

)1/q

. sup
|z|<1/2

|f(z)|

+

{
∫ 1

0

(1− r)(k/2−α)q−1

(
∫ r

0

(r − t)l−1Mp(t, T
νRlf)dt

)q

dr

}1/q

.

By Corollary 2.7, the last integral is bounded by

(
∫ 1

0

(1− r)(k/2+l−α)q−1 M q
p (r, T

νRlf)dr

)1/q

.



HOLOMORPHIC MEAN LIPSCHITZ FUNCTIONS ON THE UNIT BALL OF C
n 197

Thus, by Corollary 2.3 with X = T ν together with the change of variables
r̃ → t, we have

(
∫ 1

0

(1 − r)(k/2−α)q−1 M q
p (r, T

νf)dr

)1/q

. ||f ||Hp +

(
∫ 1

0

(1− r)(l−α)q−1 M q
p (r,Rlf)dr

)1/q

.

(iv) =⇒ (i): Let k > α and let l > 2α. Applying (2.7) of Lemma 2.4
together with (2.9)

Mp(r,Rkf) . sup
|z|<1/2

|f(z)|+
∑

|µ|=l

∫ r

0

(r − t)l/2−1Mp(t, T
µRkf)dt

. sup
|z|<1/2

|f(z)|+
∑

|ν|=l+2k

∫ r

0

(r − t)l/2−1Mp(t, T
νf)dt.

Then, as in the previous cases, using Corollary 2.7 we have

Lp,q
k−α(Rkf) . ||f ||Hp +

∑

|ν|=l+2k

Lp,q
k−α+l/2(T

νf) ≈ ||f ||Hp+
∑

|ν|=l

Lp,q
−α+l/2(T

νf).

(v) =⇒ (i): Take k = l = 1 in the proof of (iv) =⇒ (i). �

3. A priori estimates

In this section, we prepare connections between the Lp-modulus of continuity
and the mean values of the radial derivatives (see [9] and [10] for the one variable
case). Recall

ωp(t, f) = sup
‖U−I‖≤t

(
∫

ζ∈S

|f(Uζ)− f(ζ)|pdσ(ζ)
)1/p

.

Theorem 3.1. Let 0 < r < 1 and f ∈ Hp(B). Then, we have

Mp(r,Rf) .

∫ 2π

0

ωp(t, f)

|1− re−it|2 dt.

Proof. For a fixed z ∈ B, let fz(λ) = f(λz) where λ ∈ D. Since fz ∈ H1(D)
every z ∈ B, it follows by one variable Cauchy integral representation that

|Rf(rz)| ≤ |f ′
z(r)| .

∫ 2π

0

|f(Utz)− f(z)|
|eit − r|2 dt,

where Ut is the unitary transformation defined by Utz = eitz = (eitz1, e
itz2, . . .,

eitzn). Using the representation z = sζ with ζ ∈ S, 0 < s < 1, we then have

Mp(rs,Rf) .

(

∫

S

(
∫ 2π

0

|f ◦ Ut(sζ)− f(sζ)|
|1− re−it|2 dt

)p

dσ(ζ)

)1/p

.
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Since
∫

S |f ◦ Ut(sζ) − f(sζ)|p dσ(ζ) is an increasing function of s for each fixed
t, by Minkowski’s inequality we have

Mp(rs,Rf) .

∫ 2π

0

1

|1− re−it|2 ‖f ◦ Ut − f‖Lp(S)dt.

On the other hand,

‖f ◦ Ut − f‖Lp(S) ≤ sup
‖U−I‖≤t

‖f ◦ U − f‖Lp(S) = ωp(t, f)

because ‖Ut − I‖ = supζ∈S |Utζ − ζ| ≤ t. Therefore, by taking s → 1, we have
the desired inequality. �

Theorem 3.2. Let 0 < t < 1/2 and f ∈ Hp(B). Then, we have

ωp(t, f1−t) . t sup
|z|<1/2

|f(z)|+ tMp(1− t,Rf).

Proof. Let r = 1−t and let U be a unitary operator of Cn such that ‖U−I‖ ≤ t.
Then, there is another unitary operator V of Cn such that V −1UV = D, where
D is the diagonal matrix consisting of eigenvalues of U . Since D is a unitary
diagonal matrix, there exist real numbers h1, . . . , hn whose modulus does not
exceed π, such that Dζ =

(

eih1ζ1, e
ih2ζ2, . . . , e

ihnζn
)

. Also, by the unitary
invariance of dσ, we have

‖fr ◦ U − fr‖Lp(S) = ‖fr ◦ U ◦ V − fr ◦ V ‖Lp(S) = ‖fr ◦ V ◦D − fr ◦ V ‖Lp(S).

For notational convenience, let F = f ◦ V , Dζ =
(

eih1ζ1, e
ih2ζ2, . . . , e

ihnζn
)

=

eihζ and |h| =
(
∑n

1 |hj |2
)1/2

. Then we have

|Fr ◦D(ζ) − Fr(ζ)| =
∣

∣F (reihζ) − F (rζ)
∣

∣

=

∣

∣

∣

∣

∫ 1

0

d

dt

(

F (reithζ)
)

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫ 1

0

n
∑

j=1

ihjre
ithj ζj

∂F

∂zj
(reithζ)dt

∣

∣

∣

∣

∣

∣

. |h|
∫ 1

0

|∇F (reithζ)|dt.

Applying Minkowski’s inequality, we obtain

‖Fr ◦D − Fr‖Lp(S) . |h|Mp(r,∇F ).

On the other hand, from the identity

|z|2|∇F (z)|2 = |RF (z)|2 +
∑

i<j

|TijF (z)|2

(see [7] for example), it follows that

Mp(r, |∇F |) . Mp(r,RF ) +
∑

i<j

Mp(r, TijF )
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provided r > 1/2. And Corollary 2.5 gives

Mp(r, TijF ) . sup
|z|<1/2

|F (z)|+Mp(r,RF ).

Gathering up, we thus have

‖Fr ◦D − Fr‖Lp(S) . |h| sup
|z|<1/2

|F (z)|+ |h|Mp(r,RF ).

Since 1
2 |hj | ≤ |eihj − 1| ≤ |Dζ − ζ| for each j = 1, . . . , n and

sup
ζ∈S

|Dζ − ζ| = ‖D − I‖ = ‖V D − V ‖ = ‖UV − V ‖ = ‖U − I‖,

we have 1
2n |h| ≤ ‖U − I‖. This implies |h| ≤ 2n t since ‖U − I‖ ≤ t. Therefore,

we have

‖Fr ◦D − Fr‖Lp(S) . t sup
|z|<1/2

|F (z)|+ tMp(1− t,RF ).

Since RF (z) = (Rf)(V z), this completes the proof. �

Theorem 3.3. Let 0 < t < 1/2. Let f ∈ Hp(B) and ft(ζ) = f(tζ). Then, we

have

ωp(t, f) . t sup
|z|<1/2

|f(z)|+ tMp(1 − t,Rf) +

∫ t

0

Mp(1 − s,Rf)ds.

Proof. Let r = 1− t and let U be a unitary transformation of Cn. Then, from
the inequality

|f(Uζ)− f(ζ)| ≤ |f(Uζ)− f(rUζ)|+ |fr(Uζ)− fr(ζ)|+ |f(rζ) − f(ζ)|
we obtain, via the unitary invariance of dσ, that

‖f ◦ U − f‖Lp(S) . ‖f − fr‖Lp(S) + ‖fr ◦ U − fr‖Lp(S).

Therefore,

ωp(t, f) . ωp(t, f1−t) +

(
∫

S

|f(ζ)− f(rζ)|pdσ(ζ)
)1/p

.

Thus, in view of Theorem 3.2, we need an upper bound estimate for
(
∫

S

|f(ζ)− f(rζ)|pdσ(ζ)
)1/p

.

Since

f(ζ)− f(rζ) =

∫ 1

r

d

ds
f(sζ)ds =

∫ 1

r

Rf(sζ)
ds

s
,

by Minkowski’s inequality, we get

(
∫

S

|f(ζ)− f(rζ)|pdσ(ζ)
)1/p

.

(

∫

S

∣

∣

∣

∣

∫ 1

r

Rf(sζ)
ds

s

∣

∣

∣

∣

p

dσ(ζ)

)1/p
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.

∫ 1

r

(
∫

S

|Rf(sζ)|p dσ(ζ)
)1/p

ds

.

∫ t

0

Mp(1− s,Rf)ds.

This completes the proof. �

4. Proof of Theorem 1.1

In this section, we compare the two quantities which define Besov space and
mean Lipschitz space respectively. For 0 < α < 1, we define the mean Lipschitz
semi-norm Ωp,q

α (f) by

Ωp,q
α (f) =

(
∫ 1

0

ωp(t, f)
q 1

t1+αq
dt

)1/q

.

Recall the definition of Lp,q
α (g) in (2.1). Theorem 4.1 stated below together

with Theorem 2.1 proves Theorem 1.1.

Theorem 4.1. Let 0 < α < 1. Then, for f ∈ Hp(B) the following are

equivalent.

(i) Ωp,q
α (f) < ∞.

(ii) Lp,q
1−α(Rf) < ∞.

Furthermore, the left side quantities are equivalent up to addition by ||f ||Hp(B).

Proof. First suppose (ii). Cauchy estimates gives that sup|z|<1/2 |f(z)| .

‖f‖Hp(B). Thus, by Theorem 3.3 and Theorem 3.2, we have

Ωp,q
α (f) =

(
∫ 1

0

1

t1+αq
(ωp(t, f))

qdt

)1/q

. ‖f‖Hp(B)+Lp,q
1−α(Rf)+

{

∫ 1

0

1

t1+αq

(
∫ t

0

Mp(1− s,Rf)ds

)q

dt

}1/q

. ‖f‖Hp(B)+Lp,q
1−α(Rf)+

(
∫ 1

0

t(1−α)qM q
p (1 − t,Rf)

dt

t

)1/q

≈ ‖f‖Hp(B) + Lp,q
1−α(Rf),

where we used Hardy’s inequality for the second inequality.
Conversely, assume (i). By Theorem 3.1,

Lp,q
1−α(Rf) ≤

{

∫ 1

0

(1 − r)(1−α)q−1

(
∫ 2π

0

1

|1− re−it|2ωp(t, f)dt

)q

dr

}1/q

.

Note that for 0 < r, t < 1, we have

2|1− reit| ≥ [(1− r) + r(1 − cos t)] + |r sin t| & (1− r) + |t|.
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Therefore,

Lp,q
1−α(Rf) . ‖f‖Hp(B) +

{

∫ 1

0

(1 − r)(1−α)q−1

(
∫ 1

0

ωp(t, f)

(1 − r)2 + t2
dt

)q

dr

}1/q

. ‖f‖Hp(B) +

{
∫ 1

0

x(1−α)q−1

(
∫ x

0

ωp(t, f)

x2
dt

)q

dx

}1/q

+

{

∫ 1

0

x(1−α)q−1

(
∫ 1

x

ωp(t, f)

t2
dt

)q

dx

}1/q

.

By Hardy’s inequalities (i) and (ii) of Lemma 2.6, we thus have

Lp,q
1−α(Rf) . ‖f‖Hp(B) +Ωp,q

α (f). �
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